当前位置:   article > 正文

说说如何使用 IKAnalyzer 实现词频统计并排序_ikanalyzerengine分词排序

ikanalyzerengine分词排序

IKAnalyzer 是一个开源的,基于 java 语言开发的轻量级的中文分词工具包 。

IKAnalyzer 采用了特有的 “ 正向迭代最细粒度切分算法 “ ,支持细粒度和智能分词两种切分模式; 在系统环境: Core2 i7 3.4G 双核, 4G 内存, window 7 64 位, Sun JDK 1.6_29 64 位 普通 pc 环境测试, IK2012 具有 160 万字 / 秒( 3000KB/S )的高速处理能力 。

现在需要统计一批数据中的热词,即需要对这批数据进行分词分析,并统计出现频次,然后再按照从高到低排序。

1、在项目中引入 IKAnalyzer jar。
2、在 resources 中 新建 IKAnalyzer.cfg.xml 配置文件,内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
    <comment>IKAnalyzer</comment>
    <!-- 扩展词典-->
    <entry key="ext_dict">ext.dic;</entry>
    <!-- 扩展停止词词典-->
    <entry key="ext_stopwords">stopword.dic;</entry>
</properties>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

3、接着,就可以编写词频统计工具咯:

package net.deniro.solr;

import org.apache.commons.lang3.StringUtils;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

import java.io.IOException;
import java.io.StringReader;
import java.util.*;

/**
 * 分词后,根据常用词进行统计
 *
 * @author Deniro Li (lisq037@163.com)
 */
public class WordFrequency {


    /**
     * 词频统计
     *
     * @param frequencies 词频;key:词语;value:出现次数
     * @param content     内容
     * @return
     * @throws IOException
     */
    public static Map<String, Integer> count(Map<String, Integer> frequencies, String
            content) throws IOException {
        if (frequencies == null) {
            frequencies = new HashMap<>();
        }
        if (StringUtils.isBlank(content)) {
            return frequencies;
        }

        IKSegmenter ikSegmenter = new IKSegmenter(new StringReader(content), true);

        Lexeme lexeme;
        while ((lexeme = ikSegmenter.next()) != null) {
            final String text = lexeme.getLexemeText();
     
            if (text.length() > 1) {
                //递增
                if (frequencies.containsKey(text)) {
                    frequencies.put(text, frequencies.get(text) + 1);
                } else {//首次出现
                    frequencies.put(text, 1);
                }
            }
        }

        return frequencies;


    }

    /**
     * 按出现次数,从高到低排序
     *
     * @param data
     * @return
     */
    public static List<Map.Entry<String, Integer>> order(Map<String, Integer> data) {
        List<Map.Entry<String, Integer>> result = new ArrayList<>(data.entrySet());
        Collections.sort(result, new Comparator<Map.Entry<String, Integer>>() {
            @Override
            public int compare(Map.Entry<String, Integer> o1, Map.Entry<String, Integer> o2) {
                return o2.getValue() - o1.getValue();
            }
        });
        return result;
    }

    public static void main(String[] args) throws IOException {
        String content = "三星 Galaxy Note4 N9100 4G手机(幻影白)双卡双待 公开版+施华洛世奇水晶后壳(瑰金落日)套装";
        List<Map.Entry<String, Integer>> result = WordFrequency.order
                (WordFrequency.count(new HashMap<String, Integer>(), content));
        System.out.println(result);
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

main 方法的运行结果为:

[note4=1, 4g=1, 手机=1, 套装=1, 落日=1, galaxy=1, 幻影=1, n9100=1, 公开=1, 三星=1, 水晶=1]

4、实际使用:

...
        Map<String, Integer> data = new HashMap<>();
        Map<String, Integer> frequencies = new HashMap<>();
        for (SolrDocument doc : documents) {
            final String item_sell_point = (String) doc.get
                    ("item_sell_point");
            data.putAll(WordFrequency.count(frequencies, item_sell_point));

        }


        //【卖点】分词统计
        List<Map.Entry<String, Integer>> result = WordFrequency.order(data);
        System.out.println(result);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

运行结果:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/109680
推荐阅读
相关标签
  

闽ICP备14008679号