赞
踩
如有错误,恳请指出。
在本地上,可以安装一些软件,比如:Meshlab,CloudCompare等3D查看工具来对点云进行可视化。而这篇博客是将介绍一些代码工具将KITTI数据集进行可视化操作,包括点云鸟瞰图,FOV图,以及标注信息在图像+点云上的显示。
KITTI数据集作为自动驾驶领域的经典数据集之一,比较适合我这样的新手入门。以下资料是为了实现对KITTI数据集的可视化操作。首先在官网下载对应的数据:http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d,下载后数据的目录文件结构如下所示:
├── dataset
│ ├── KITTI
│ │ ├── object
│ │ │ ├──KITTI
│ │ │ ├──ImageSets
│ │ │ ├──training
│ │ │ ├──calib & velodyne & label_2 & image_2
这里使用了一个kitti数据集可视化的开源代码:https://github.com/kuixu/kitti_object_vis,按照以下操作新建一个虚拟环境,并安装所需的工具包。其中千万不要安装python3.7以上的版本,因为vtk不支持。
# 新建python=3.7的虚拟环境
conda create -n kitti_vis python=3.7 # vtk does not support python 3.8
conda activate kitti_vis
# 安装opencv, pillow, scipy, matplotlib工具包
pip install opencv-python pillow scipy matplotlib
# 安装3D可视化工具包(以下指令会自动安转所需的vtk与pyqt5)
conda install mayavi -c conda-forge
# 测试
python kitti_object.py --show_lidar_with_depth --img_fov --const_box --vis
下面依次展示 KITTI 数据集可视化结果,这里通过设置 data_idx=10 来展示编号为000010的数据,代码中dataset需要修改为数据集实际路径。(最后会贴上完整代码)
def visualization():
import mayavi.mlab as mlab
dataset = kitti_object(os.path.join(ROOT_DIR, '../dataset/KITTI/object'))
# determine data_idx
data_idx = 100
# Load data from dataset
objects = dataset.get_label_objects(data_idx)
print("There are %d objects.", len(objects))
img = dataset.get_image(data_idx)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_height, img_width, img_channel = img.shape
pc_velo = dataset.get_lidar(data_idx)[:,0:3]
calib = dataset.get_calibration(data_idx)
代码来源于参考资料,在后面会贴上我自己修改的测试代码。以下包含9种可视化的操作:
def show_image(self):
Image.fromarray(self.img).show()
cv2.waitKey(0)
结果展示:
def show_image_with_2d_boxes(self):
show_image_with_boxes(self.img, self.objects, self.calib, show3d=False)
cv2.waitKey(0)
结果展示:
def show_image_with_3d_boxes(self):
show_image_with_boxes(self.img, self.objects, self.calib, show3d=True)
cv2.waitKey(0)
结果展示:
def show_image_with_lidar(self):
show_lidar_on_image(self.pc_velo, self.img, self.calib, self.img_width, self.img_height)
mlab.show()
结果展示:
def show_lidar_with_3d_boxes(self):
show_lidar_with_boxes(self.pc_velo, self.objects, self.calib, True, self.img_width, self.img_height)
mlab.show()
结果展示:
def show_lidar_with_fov(self):
imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(self.pc_velo, self.calib,
0, 0, self.img_width, self.img_height, True)
draw_lidar(imgfov_pc_velo)
mlab.show()
结果展示:
def show_lidar_with_3dview(self):
draw_lidar(self.pc_velo)
mlab.show()
结果展示:
BEV图的显示与其他视图不一样,这里的代码需要有点改动,因为这里需要lidar点云的其他维度信息,所以输入不仅仅是xyz三个维度。改动代码:
# 初始
pc_velo = dataset.get_lidar(data_idx)[:, 0:3]
# 改为(要增加其他维度才可以查看BEV视图)
pc_velo = dataset.get_lidar(data_idx)[:, 0:4]
测试代码:
def show_lidar_with_bev(self):
from kitti_util import draw_top_image, lidar_to_top
top_view = lidar_to_top(self.pc_velo)
top_image = draw_top_image(top_view)
cv2.imshow("top_image", top_image)
cv2.waitKey(0)
结果展示:
同样,这里的代码改动与3.8节一样,需要点云的其他维度信息
def show_lidar_with_bev_2d_bbox(self):
show_lidar_topview_with_boxes(self.pc_velo, self.objects, self.calib)
mlab.show()
结果展示:
参考代码:
import mayavi.mlab as mlab from kitti_object import kitti_object, show_image_with_boxes, show_lidar_on_image, \ show_lidar_with_boxes, show_lidar_topview_with_boxes, get_lidar_in_image_fov, \ show_lidar_with_depth from viz_util import draw_lidar import cv2 from PIL import Image import time class visualization: # data_idx: determine data_idx def __init__(self, root_dir=r'E:\Study\Machine Learning\Dataset3d\kitti', data_idx=100): dataset = kitti_object(root_dir=root_dir) # Load data from dataset objects = dataset.get_label_objects(data_idx) print("There are {} objects.".format(len(objects))) img = dataset.get_image(data_idx) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_height, img_width, img_channel = img.shape pc_velo = dataset.get_lidar(data_idx)[:, 0:3] # 显示bev视图需要改动为[:, 0:4] calib = dataset.get_calibration(data_idx) # init the params self.objects = objects self.img = img self.img_height = img_height self.img_width = img_width self.img_channel = img_channel self.pc_velo = pc_velo self.calib = calib # 1. 图像显示 def show_image(self): Image.fromarray(self.img).show() cv2.waitKey(0) # 2. 图片上绘制2D bbox def show_image_with_2d_boxes(self): show_image_with_boxes(self.img, self.objects, self.calib, show3d=False) cv2.waitKey(0) # 3. 图片上绘制3D bbox def show_image_with_3d_boxes(self): show_image_with_boxes(self.img, self.objects, self.calib, show3d=True) cv2.waitKey(0) # 4. 图片上绘制Lidar投影 def show_image_with_lidar(self): show_lidar_on_image(self.pc_velo, self.img, self.calib, self.img_width, self.img_height) mlab.show() # 5. Lidar绘制3D bbox def show_lidar_with_3d_boxes(self): show_lidar_with_boxes(self.pc_velo, self.objects, self.calib, True, self.img_width, self.img_height) mlab.show() # 6. Lidar绘制FOV图 def show_lidar_with_fov(self): imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(self.pc_velo, self.calib, 0, 0, self.img_width, self.img_height, True) draw_lidar(imgfov_pc_velo) mlab.show() # 7. Lidar绘制3D图 def show_lidar_with_3dview(self): draw_lidar(self.pc_velo) mlab.show() # 8. Lidar绘制BEV图 def show_lidar_with_bev(self): from kitti_util import draw_top_image, lidar_to_top top_view = lidar_to_top(self.pc_velo) top_image = draw_top_image(top_view) cv2.imshow("top_image", top_image) cv2.waitKey(0) # 9. Lidar绘制BEV图+2D bbox def show_lidar_with_bev_2d_bbox(self): show_lidar_topview_with_boxes(self.pc_velo, self.objects, self.calib) mlab.show() if __name__ == '__main__': kitti_vis = visualization() # kitti_vis.show_image() # kitti_vis.show_image_with_2d_boxes() # kitti_vis.show_image_with_3d_boxes() # kitti_vis.show_image_with_lidar() # kitti_vis.show_lidar_with_3d_boxes() # kitti_vis.show_lidar_with_fov() # kitti_vis.show_lidar_with_3dview() # kitti_vis.show_lidar_with_bev() kitti_vis.show_lidar_with_bev_2d_bbox() # print('...') # cv2.waitKey(0)
此外,下面再提供两份可视化代码。
这里的同样使用的是上述的图例,且直接输入的KITTI数据集的.bin文件,即可显示点云图像。
import numpy as np import mayavi.mlab import os # 000010.bin这里需要填写文件的位置 # bin_file = '../data/object/training/velodyne/000000.bin' # assert os.path.exists(bin_file), "{} is not exists".format(bin_file) kitti_file = r'E:\Study\Machine Learning\Dataset3d\kitti\training\velodyne\000100.bin' pointcloud = np.fromfile(file=kitti_file, dtype=np.float32, count=-1).reshape([-1, 4]) # pointcloud = np.fromfile(str("000010.bin"), dtype=np.float32, count=-1).reshape([-1, 4]) print(pointcloud.shape) x = pointcloud[:, 0] # x position of point y = pointcloud[:, 1] # y position of point z = pointcloud[:, 2] # z position of point r = pointcloud[:, 3] # reflectance value of point d = np.sqrt(x ** 2 + y ** 2) # Map Distance from sensor vals = 'height' if vals == "height": col = z else: col = d fig = mayavi.mlab.figure(bgcolor=(0, 0, 0), size=(640, 500)) mayavi.mlab.points3d(x, y, z, col, # Values used for Color mode="point", colormap='spectral', # 'bone', 'copper', 'gnuplot' # color=(0, 1, 0), # Used a fixed (r,g,b) instead figure=fig, ) x = np.linspace(5, 5, 50) y = np.linspace(0, 0, 50) z = np.linspace(0, 5, 50) mayavi.mlab.plot3d(x, y, z) mayavi.mlab.show()
ps:这里的输出点云结果相比上面的点云输出结果更加的完善,而且参考的中心坐标点也不一样。
代码中的鸟瞰图范围可以自行设置。同样,输入的也只需要是.bin文件即可展示其鸟瞰图。
import numpy as np from PIL import Image import matplotlib.pyplot as plt # 点云读取:000010.bin这里需要填写文件的位置 kitti_file = r'E:\Study\Machine Learning\Dataset3d\kitti\training\velodyne\000100.bin' pointcloud = np.fromfile(file=kitti_file, dtype=np.float32, count=-1).reshape([-1, 4]) # 设置鸟瞰图范围 side_range = (-40, 40) # 左右距离 # fwd_range = (0, 70.4) # 后前距离 fwd_range = (-70.4, 70.4) x_points = pointcloud[:, 0] y_points = pointcloud[:, 1] z_points = pointcloud[:, 2] # 获得区域内的点 f_filt = np.logical_and(x_points > fwd_range[0], x_points < fwd_range[1]) s_filt = np.logical_and(y_points > side_range[0], y_points < side_range[1]) filter = np.logical_and(f_filt, s_filt) indices = np.argwhere(filter).flatten() x_points = x_points[indices] y_points = y_points[indices] z_points = z_points[indices] res = 0.1 # 分辨率0.05m x_img = (-y_points / res).astype(np.int32) y_img = (-x_points / res).astype(np.int32) # 调整坐标原点 x_img -= int(np.floor(side_range[0]) / res) y_img += int(np.floor(fwd_range[1]) / res) print(x_img.min(), x_img.max(), y_img.min(), x_img.max()) # 填充像素值 height_range = (-2, 0.5) pixel_value = np.clip(a=z_points, a_max=height_range[1], a_min=height_range[0]) def scale_to_255(a, min, max, dtype=np.uint8): return ((a - min) / float(max - min) * 255).astype(dtype) pixel_value = scale_to_255(pixel_value, height_range[0], height_range[1]) # 创建图像数组 x_max = 1 + int((side_range[1] - side_range[0]) / res) y_max = 1 + int((fwd_range[1] - fwd_range[0]) / res) im = np.zeros([y_max, x_max], dtype=np.uint8) im[y_img, x_img] = pixel_value # imshow (灰度) im2 = Image.fromarray(im) im2.show() # imshow (彩色) # plt.imshow(im, cmap="nipy_spectral", vmin=0, vmax=255) # plt.show()
后续的工作会加深对点云数据的理解,整个可视化项目的工程见:KITTI数据集的可视化项目,有需要的朋友可以自行下载。
参考资料:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。