当前位置:   article > 正文

使用RegNet替换YOLOX中原始的Backbone

使用RegNet替换YOLOX中原始的Backbone

使用mmdetection 中的RegNet bcakbones替换YOLOX中原始的Backbone

将mmdet/models/backbones/regnet.py中相关的代码复制到YOLOX中,并进行适配

注意通道数要适配

in_channels = [64, 160, 384]

,可以通过调试后,先运行到后后端输出结果出,打印出通道数,得到通道后,在写到这个地方。

 

  1. (yolox) xuefei@f123:/mnt/d/work/study/detect/8$ python -m yolox.tools.train -f exps/kitti_car_detection/yolox_regnet.py -d 0 -b 16 --fp16
  2. 2024-02-18 22:17:51 | INFO | yolox.core.trainer:126 - args: Namespace(batch_size=16, cache=False, ckpt=None, devices=0, dist_backend='nccl', dist_url=None, exp_file='exps/kitti_car_detection/yolox_regnet.py', experiment_name='yolox_regnet', fp16=True, logger='tensorboard', machine_rank=0, name=None, num_machines=1, occupy=False, opts=[], resume=False, start_epoch=None)
  3. 2024-02-18 22:17:51 | INFO | yolox.core.trainer:127 - exp value:
  4. ╒═══════════════════╤═══════════════════════════════════════════════════════════════╕
  5. │ keys │ values │
  6. ╞═══════════════════╪═══════════════════════════════════════════════════════════════╡
  7. │ seed │ None
  8. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  9. │ output_dir │ './YOLOX_outputs'
  10. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  11. │ print_interval │ 10
  12. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  13. │ eval_interval │ 10
  14. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  15. │ num_classes │ 7
  16. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  17. │ depth │ 1.0
  18. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  19. │ width │ 0.5
  20. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  21. │ act │ 'silu'
  22. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  23. │ data_num_workers │ 16
  24. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  25. │ input_size │ (256, 832) │
  26. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  27. │ multiscale_range │ 5
  28. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  29. │ data_dir │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/img/'
  30. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  31. │ train_ann │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/train.json'
  32. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  33. │ val_ann │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/val.json'
  34. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  35. │ test_ann │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/test.json'
  36. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  37. │ mosaic_prob │ 1.0
  38. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  39. │ mixup_prob │ 1.0
  40. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  41. │ hsv_prob │ 1.0
  42. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  43. │ flip_prob │ 0.5
  44. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  45. │ degrees │ 10.0
  46. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  47. │ translate │ 0.1
  48. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  49. │ mosaic_scale │ (0.1, 2) │
  50. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  51. │ enable_mixup │ True
  52. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  53. │ mixup_scale │ (0.5, 1.5) │
  54. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  55. │ shear │ 2.0
  56. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  57. │ warmup_epochs │ 5
  58. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  59. │ max_epoch │ 300
  60. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  61. │ warmup_lr │ 0
  62. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  63. │ min_lr_ratio │ 0.05
  64. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  65. │ basic_lr_per_img │ 0.00015625
  66. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  67. │ scheduler │ 'yoloxwarmcos'
  68. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  69. │ no_aug_epochs │ 80
  70. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  71. │ ema │ True
  72. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  73. │ weight_decay │ 0.0005
  74. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  75. │ momentum │ 0.9
  76. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  77. │ save_history_ckpt │ True
  78. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  79. │ exp_name │ 'yolox_regnet'
  80. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  81. │ test_size │ (256, 832) │
  82. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  83. │ test_conf │ 0.01
  84. ├───────────────────┼───────────────────────────────────────────────────────────────┤
  85. │ nmsthre │ 0.65
  86. ╘═══════════════════╧═══════════════════════════════════════════════════════════════╛
  87. 2024-02-18 22:17:52 | INFO | yolox.core.trainer:133 - Model Summary: Params: 8.90M, Gflops: 10.70
  88. 2024-02-18 22:17:54 | INFO | yolox.data.datasets.kitti:64 - loading annotations into memory...
  89. 2024-02-18 22:17:55 | INFO | yolox.data.datasets.kitti:64 - Done (t=0.08s)
  90. 2024-02-18 22:17:55 | INFO | pycocotools.coco:86 - creating index...
  91. 2024-02-18 22:17:55 | INFO | pycocotools.coco:86 - index created!
  92. 2024-02-18 22:17:55 | INFO | yolox.core.trainer:151 - init prefetcher, this might take one minute or less...
  93. 2024-02-18 22:18:07 | INFO | yolox.data.datasets.kitti:64 - loading annotations into memory...
  94. 2024-02-18 22:18:08 | INFO | yolox.data.datasets.kitti:64 - Done (t=0.11s)
  95. 2024-02-18 22:18:08 | INFO | pycocotools.coco:86 - creating index...
  96. 2024-02-18 22:18:08 | INFO | pycocotools.coco:86 - index created!
  97. 2024-02-18 22:18:08 | INFO | yolox.core.trainer:187 - Training start...
  98. 2024-02-18 22:18:08 | INFO | yolox.core.trainer:188 -
  99. YOLOX(
  100. (backbone): YOLOPAFPNRegNet(
  101. (backbone): RegNet(
  102. (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  103. (bn1): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  104. (relu): ReLU(inplace=True)
  105. (layer1): ResLayer(
  106. (0): Bottleneck(
  107. (conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  108. (bn1): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  109. (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=2, bias=False)
  110. (bn2): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  111. (conv3): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  112. (bn3): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  113. (relu): ReLU(inplace=True)
  114. (downsample): Sequential(
  115. (0): Conv2d(32, 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
  116. (1): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  117. )
  118. )
  119. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  120. )
  121. (layer2): ResLayer(
  122. (0): Bottleneck(
  123. (conv1): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  124. (bn1): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  125. (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=4, bias=False)
  126. (bn2): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  127. (conv3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  128. (bn3): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  129. (relu): ReLU(inplace=True)
  130. (downsample): Sequential(
  131. (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
  132. (1): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  133. )
  134. )
  135. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  136. (1): Bottleneck(
  137. (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  138. (bn1): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  139. (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
  140. (bn2): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  141. (conv3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  142. (bn3): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  143. (relu): ReLU(inplace=True)
  144. )
  145. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  146. )
  147. (layer3): ResLayer(
  148. (0): Bottleneck(
  149. (conv1): Conv2d(64, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  150. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  151. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=10, bias=False)
  152. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  153. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  154. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  155. (relu): ReLU(inplace=True)
  156. (downsample): Sequential(
  157. (0): Conv2d(64, 160, kernel_size=(1, 1), stride=(2, 2), bias=False)
  158. (1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  159. )
  160. )
  161. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  162. (1): Bottleneck(
  163. (conv1): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  164. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  165. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=10, bias=False)
  166. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  167. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  168. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  169. (relu): ReLU(inplace=True)
  170. )
  171. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  172. (2): Bottleneck(
  173. (conv1): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  174. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  175. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=10, bias=False)
  176. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  177. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  178. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  179. (relu): ReLU(inplace=True)
  180. )
  181. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  182. (3): Bottleneck(
  183. (conv1): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  184. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  185. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=10, bias=False)
  186. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  187. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  188. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  189. (relu): ReLU(inplace=True)
  190. )
  191. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  192. (4): Bottleneck(
  193. (conv1): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  194. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  195. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=10, bias=False)
  196. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  197. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  198. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  199. (relu): ReLU(inplace=True)
  200. )
  201. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  202. (5): Bottleneck(
  203. (conv1): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  204. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  205. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=10, bias=False)
  206. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  207. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  208. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  209. (relu): ReLU(inplace=True)
  210. )
  211. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  212. (6): Bottleneck(
  213. (conv1): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  214. (bn1): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  215. (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=10, bias=False)
  216. (bn2): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  217. (conv3): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  218. (bn3): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  219. (relu): ReLU(inplace=True)
  220. )
  221. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  222. )
  223. (layer4): ResLayer(
  224. (0): Bottleneck(
  225. (conv1): Conv2d(160, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  226. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  227. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)
  228. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  229. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  230. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  231. (relu): ReLU(inplace=True)
  232. (downsample): Sequential(
  233. (0): Conv2d(160, 384, kernel_size=(1, 1), stride=(2, 2), bias=False)
  234. (1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  235. )
  236. )
  237. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  238. (1): Bottleneck(
  239. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  240. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  241. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  242. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  243. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  244. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  245. (relu): ReLU(inplace=True)
  246. )
  247. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  248. (2): Bottleneck(
  249. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  250. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  251. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  252. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  253. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  254. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  255. (relu): ReLU(inplace=True)
  256. )
  257. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  258. (3): Bottleneck(
  259. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  260. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  261. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  262. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  263. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  264. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  265. (relu): ReLU(inplace=True)
  266. )
  267. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  268. (4): Bottleneck(
  269. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  270. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  271. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  272. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  273. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  274. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  275. (relu): ReLU(inplace=True)
  276. )
  277. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  278. (5): Bottleneck(
  279. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  280. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  281. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  282. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  283. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  284. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  285. (relu): ReLU(inplace=True)
  286. )
  287. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  288. (6): Bottleneck(
  289. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  290. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  291. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  292. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  293. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  294. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  295. (relu): ReLU(inplace=True)
  296. )
  297. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  298. (7): Bottleneck(
  299. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  300. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  301. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  302. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  303. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  304. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  305. (relu): ReLU(inplace=True)
  306. )
  307. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  308. (8): Bottleneck(
  309. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  310. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  311. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  312. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  313. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  314. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  315. (relu): ReLU(inplace=True)
  316. )
  317. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  318. (9): Bottleneck(
  319. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  320. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  321. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  322. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  323. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  324. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  325. (relu): ReLU(inplace=True)
  326. )
  327. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  328. (10): Bottleneck(
  329. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  330. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  331. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  332. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  333. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  334. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  335. (relu): ReLU(inplace=True)
  336. )
  337. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  338. (11): Bottleneck(
  339. (conv1): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  340. (bn1): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  341. (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=24, bias=False)
  342. (bn2): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  343. (conv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  344. (bn3): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  345. (relu): ReLU(inplace=True)
  346. )
  347. init_cfg={'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
  348. )
  349. )
  350. init_cfg=[{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]
  351. (upsample): Upsample(scale_factor=2.0, mode=nearest)
  352. (lateral_conv0): BaseConv(
  353. (conv): Conv2d(384, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  354. (bn): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  355. (act): SiLU(inplace=True)
  356. )
  357. (C3_p4): CSPLayer(
  358. (conv1): BaseConv(
  359. (conv): Conv2d(320, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  360. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  361. (act): SiLU(inplace=True)
  362. )
  363. (conv2): BaseConv(
  364. (conv): Conv2d(320, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  365. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  366. (act): SiLU(inplace=True)
  367. )
  368. (conv3): BaseConv(
  369. (conv): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  370. (bn): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  371. (act): SiLU(inplace=True)
  372. )
  373. (m): Sequential(
  374. (0): Bottleneck(
  375. (conv1): BaseConv(
  376. (conv): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  377. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  378. (act): SiLU(inplace=True)
  379. )
  380. (conv2): BaseConv(
  381. (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  382. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  383. (act): SiLU(inplace=True)
  384. )
  385. )
  386. (1): Bottleneck(
  387. (conv1): BaseConv(
  388. (conv): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  389. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  390. (act): SiLU(inplace=True)
  391. )
  392. (conv2): BaseConv(
  393. (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  394. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  395. (act): SiLU(inplace=True)
  396. )
  397. )
  398. (2): Bottleneck(
  399. (conv1): BaseConv(
  400. (conv): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  401. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  402. (act): SiLU(inplace=True)
  403. )
  404. (conv2): BaseConv(
  405. (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  406. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  407. (act): SiLU(inplace=True)
  408. )
  409. )
  410. )
  411. )
  412. (reduce_conv1): BaseConv(
  413. (conv): Conv2d(160, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  414. (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  415. (act): SiLU(inplace=True)
  416. )
  417. (C3_p3): CSPLayer(
  418. (conv1): BaseConv(
  419. (conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  420. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  421. (act): SiLU(inplace=True)
  422. )
  423. (conv2): BaseConv(
  424. (conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  425. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  426. (act): SiLU(inplace=True)
  427. )
  428. (conv3): BaseConv(
  429. (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  430. (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  431. (act): SiLU(inplace=True)
  432. )
  433. (m): Sequential(
  434. (0): Bottleneck(
  435. (conv1): BaseConv(
  436. (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  437. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  438. (act): SiLU(inplace=True)
  439. )
  440. (conv2): BaseConv(
  441. (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  442. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  443. (act): SiLU(inplace=True)
  444. )
  445. )
  446. (1): Bottleneck(
  447. (conv1): BaseConv(
  448. (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  449. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  450. (act): SiLU(inplace=True)
  451. )
  452. (conv2): BaseConv(
  453. (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  454. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  455. (act): SiLU(inplace=True)
  456. )
  457. )
  458. (2): Bottleneck(
  459. (conv1): BaseConv(
  460. (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
  461. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  462. (act): SiLU(inplace=True)
  463. )
  464. (conv2): BaseConv(
  465. (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  466. (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  467. (act): SiLU(inplace=True)
  468. )
  469. )
  470. )
  471. )
  472. (bu_conv2): BaseConv(
  473. (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  474. (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  475. (act): SiLU(inplace=True)
  476. )
  477. (C3_n3): CSPLayer(
  478. (conv1): BaseConv(
  479. (conv): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  480. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  481. (act): SiLU(inplace=True)
  482. )
  483. (conv2): BaseConv(
  484. (conv): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  485. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  486. (act): SiLU(inplace=True)
  487. )
  488. (conv3): BaseConv(
  489. (conv): Conv2d(160, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
  490. (bn): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  491. (act): SiLU(inplace=True)
  492. )
  493. (m): Sequential(
  494. (0): Bottleneck(
  495. (conv1): BaseConv(
  496. (conv): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  497. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  498. (act): SiLU(inplace=True)
  499. )
  500. (conv2): BaseConv(
  501. (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  502. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  503. (act): SiLU(inplace=True)
  504. )
  505. )
  506. (1): Bottleneck(
  507. (conv1): BaseConv(
  508. (conv): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  509. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  510. (act): SiLU(inplace=True)
  511. )
  512. (conv2): BaseConv(
  513. (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  514. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  515. (act): SiLU(inplace=True)
  516. )
  517. )
  518. (2): Bottleneck(
  519. (conv1): BaseConv(
  520. (conv): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
  521. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  522. (act): SiLU(inplace=True)
  523. )
  524. (conv2): BaseConv(
  525. (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  526. (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  527. (act): SiLU(inplace=True)
  528. )
  529. )
  530. )
  531. )
  532. (bu_conv1): BaseConv(
  533. (conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  534. (bn): BatchNorm2d(160, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  535. (act): SiLU(inplace=True)
  536. )
  537. (C3_n4): CSPLayer(
  538. (conv1): BaseConv(
  539. (conv): Conv2d(320, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
  540. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  541. (act): SiLU(inplace=True)
  542. )
  543. (conv2): BaseConv(
  544. (conv): Conv2d(320, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
  545. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  546. (act): SiLU(inplace=True)
  547. )
  548. (conv3): BaseConv(
  549. (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
  550. (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  551. (act): SiLU(inplace=True)
  552. )
  553. (m): Sequential(
  554. (0): Bottleneck(
  555. (conv1): BaseConv(
  556. (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
  557. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  558. (act): SiLU(inplace=True)
  559. )
  560. (conv2): BaseConv(
  561. (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  562. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  563. (act): SiLU(inplace=True)
  564. )
  565. )
  566. (1): Bottleneck(
  567. (conv1): BaseConv(
  568. (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
  569. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  570. (act): SiLU(inplace=True)
  571. )
  572. (conv2): BaseConv(
  573. (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  574. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  575. (act): SiLU(inplace=True)
  576. )
  577. )
  578. (2): Bottleneck(
  579. (conv1): BaseConv(
  580. (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
  581. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  582. (act): SiLU(inplace=True)
  583. )
  584. (conv2): BaseConv(
  585. (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  586. (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  587. (act): SiLU(inplace=True)
  588. )
  589. )
  590. )
  591. )
  592. )
  593. (head): YOLOXHeadFixed(
  594. (cls_convs): ModuleList(
  595. (0): Sequential(
  596. (0): BaseConv(
  597. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  598. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  599. (act): SiLU(inplace=True)
  600. )
  601. (1): BaseConv(
  602. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  603. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  604. (act): SiLU(inplace=True)
  605. )
  606. )
  607. (1): Sequential(
  608. (0): BaseConv(
  609. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  610. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  611. (act): SiLU(inplace=True)
  612. )
  613. (1): BaseConv(
  614. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  615. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  616. (act): SiLU(inplace=True)
  617. )
  618. )
  619. (2): Sequential(
  620. (0): BaseConv(
  621. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  622. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  623. (act): SiLU(inplace=True)
  624. )
  625. (1): BaseConv(
  626. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  627. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  628. (act): SiLU(inplace=True)
  629. )
  630. )
  631. )
  632. (reg_convs): ModuleList(
  633. (0): Sequential(
  634. (0): BaseConv(
  635. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  636. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  637. (act): SiLU(inplace=True)
  638. )
  639. (1): BaseConv(
  640. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  641. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  642. (act): SiLU(inplace=True)
  643. )
  644. )
  645. (1): Sequential(
  646. (0): BaseConv(
  647. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  648. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  649. (act): SiLU(inplace=True)
  650. )
  651. (1): BaseConv(
  652. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  653. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  654. (act): SiLU(inplace=True)
  655. )
  656. )
  657. (2): Sequential(
  658. (0): BaseConv(
  659. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  660. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  661. (act): SiLU(inplace=True)
  662. )
  663. (1): BaseConv(
  664. (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  665. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  666. (act): SiLU(inplace=True)
  667. )
  668. )
  669. )
  670. (cls_preds): ModuleList(
  671. (0): Conv2d(128, 7, kernel_size=(1, 1), stride=(1, 1))
  672. (1): Conv2d(128, 7, kernel_size=(1, 1), stride=(1, 1))
  673. (2): Conv2d(128, 7, kernel_size=(1, 1), stride=(1, 1))
  674. )
  675. (reg_preds): ModuleList(
  676. (0): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
  677. (1): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
  678. (2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
  679. )
  680. (obj_preds): ModuleList(
  681. (0): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
  682. (1): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
  683. (2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
  684. )
  685. (stems): ModuleList(
  686. (0): BaseConv(
  687. (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
  688. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  689. (act): SiLU(inplace=True)
  690. )
  691. (1): BaseConv(
  692. (conv): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
  693. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  694. (act): SiLU(inplace=True)
  695. )
  696. (2): BaseConv(
  697. (conv): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
  698. (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  699. (act): SiLU(inplace=True)
  700. )
  701. )
  702. (l1_loss): L1Loss()
  703. (bcewithlog_loss): BCEWithLogitsLoss()
  704. (iou_loss): IOUloss()
  705. )
  706. )
  707. 2024-02-18 22:18:08 | INFO | yolox.core.trainer:199 - ---> start train epoch1
  708. 2024-02-18 22:18:15 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 10/250, mem: 2790Mb, iter_time: 0.753s, data_time: 0.002s, total_loss: 15.9, iou_loss: 4.3, l1_loss: 2.3, conf_loss: 8.0, cls_loss: 1.2, lr: 1.600e-07, size: 256, ETA: 15:41:22
  709. 2024-02-18 22:18:25 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 20/250, mem: 3853Mb, iter_time: 0.915s, data_time: 0.002s, total_loss: 20.4, iou_loss: 4.3, l1_loss: 2.7, conf_loss: 12.2, cls_loss: 1.1, lr: 6.400e-07, size: 384, ETA: 17:22:16
  710. 2024-02-18 22:18:35 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 30/250, mem: 3871Mb, iter_time: 1.053s, data_time: 0.002s, total_loss: 21.8, iou_loss: 4.2, l1_loss: 2.4, conf_loss: 14.0, cls_loss: 1.1, lr: 1.440e-06, size: 416, ETA: 18:53:27
  711. 2024-02-18 22:18:39 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 40/250, mem: 3871Mb, iter_time: 0.380s, data_time: 0.001s, total_loss: 15.2, iou_loss: 4.4, l1_loss: 2.3, conf_loss: 7.3, cls_loss: 1.2, lr: 2.560e-06, size: 256, ETA: 16:08:35
  712. 2024-02-18 22:18:45 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 50/250, mem: 3871Mb, iter_time: 0.576s, data_time: 0.002s, total_loss: 14.7, iou_loss: 4.2, l1_loss: 2.0, conf_loss: 7.3, cls_loss: 1.2, lr: 4.000e-06, size: 224, ETA: 15:18:46
  713. 2024-02-18 22:18:52 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 60/250, mem: 3871Mb, iter_time: 0.701s, data_time: 0.002s, total_loss: 20.0, iou_loss: 4.4, l1_loss: 2.8, conf_loss: 11.8, cls_loss: 1.1, lr: 5.760e-06, size: 416, ETA: 15:11:29
  714. 2024-02-18 22:18:59 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 70/250, mem: 3871Mb, iter_time: 0.689s, data_time: 0.002s, total_loss: 25.5, iou_loss: 4.3, l1_loss: 2.8, conf_loss: 17.3, cls_loss: 1.1, lr: 7.840e-06, size: 416, ETA: 15:04:08
  715. 2024-02-18 22:19:04 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 80/250, mem: 3871Mb, iter_time: 0.532s, data_time: 0.001s, total_loss: 14.0, iou_loss: 4.4, l1_loss: 2.1, conf_loss: 6.4, cls_loss: 1.2, lr: 1.024e-05, size: 192, ETA: 14:34:04
  716. 2024-02-18 22:19:12 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 90/250, mem: 3871Mb, iter_time: 0.847s, data_time: 0.002s, total_loss: 19.2, iou_loss: 4.5, l1_loss: 2.5, conf_loss: 11.2, cls_loss: 1.1, lr: 1.296e-05, size: 320, ETA: 14:54:16
  717. 2024-02-18 22:19:18 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 100/250, mem: 3871Mb, iter_time: 0.524s, data_time: 0.002s, total_loss: 16.2, iou_loss: 4.1, l1_loss: 2.2, conf_loss: 8.7, cls_loss: 1.3, lr: 1.600e-05, size: 320, ETA: 14:30:13
  718. 2024-02-18 22:19:23 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 110/250, mem: 3871Mb, iter_time: 0.519s, data_time: 0.001s, total_loss: 18.0, iou_loss: 4.3, l1_loss: 2.4, conf_loss: 10.2, cls_loss: 1.2, lr: 1.936e-05, size: 320, ETA: 14:09:50
  719. 2024-02-18 22:19:32 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 120/250, mem: 3871Mb, iter_time: 0.913s, data_time: 0.002s, total_loss: 21.2, iou_loss: 4.4, l1_loss: 2.7, conf_loss: 13.0, cls_loss: 1.0, lr: 2.304e-05, size: 352, ETA: 14:33:49
  720. 2024-02-18 22:19:35 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 130/250, mem: 3871Mb, iter_time: 0.337s, data_time: 0.001s, total_loss: 13.8, iou_loss: 4.2, l1_loss: 2.1, conf_loss: 6.2, cls_loss: 1.3, lr: 2.704e-05, size: 192, ETA: 13:58:51
  721. 2024-02-18 22:19:39 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 140/250, mem: 3871Mb, iter_time: 0.395s, data_time: 0.002s, total_loss: 13.4, iou_loss: 4.1, l1_loss: 2.1, conf_loss: 5.8, cls_loss: 1.4, lr: 3.136e-05, size: 160, ETA: 13:34:01
  722. 2024-02-18 22:19:45 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 150/250, mem: 3871Mb, iter_time: 0.584s, data_time: 0.175s, total_loss: 15.0, iou_loss: 4.1, l1_loss: 2.1, conf_loss: 7.5, cls_loss: 1.3, lr: 3.600e-05, size: 256, ETA: 13:28:14
  723. 2024-02-18 22:19:51 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 160/250, mem: 3871Mb, iter_time: 0.584s, data_time: 0.210s, total_loss: 14.3, iou_loss: 4.1, l1_loss: 2.4, conf_loss: 6.5, cls_loss: 1.3, lr: 4.096e-05, size: 224, ETA: 13:23:07
  724. 2024-02-18 22:19:59 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 170/250, mem: 3871Mb, iter_time: 0.765s, data_time: 0.349s, total_loss: 14.7, iou_loss: 4.2, l1_loss: 2.3, conf_loss: 6.8, cls_loss: 1.3, lr: 4.624e-05, size: 256, ETA: 13:31:53
  725. 2024-02-18 22:20:07 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 180/250, mem: 3871Mb, iter_time: 0.790s, data_time: 0.045s, total_loss: 14.5, iou_loss: 3.7, l1_loss: 2.2, conf_loss: 7.1, cls_loss: 1.5, lr: 5.184e-05, size: 288, ETA: 13:41:26
  726. 2024-02-18 22:20:14 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 190/250, mem: 3871Mb, iter_time: 0.734s, data_time: 0.019s, total_loss: 16.4, iou_loss: 3.8, l1_loss: 2.7, conf_loss: 8.4, cls_loss: 1.5, lr: 5.776e-05, size: 416, ETA: 13:46:15
  727. 2024-02-18 22:20:21 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 200/250, mem: 3871Mb, iter_time: 0.658s, data_time: 0.348s, total_loss: 13.1, iou_loss: 3.6, l1_loss: 2.2, conf_loss: 5.7, cls_loss: 1.5, lr: 6.400e-05, size: 192, ETA: 13:45:51
  728. 2024-02-18 22:20:28 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 210/250, mem: 3871Mb, iter_time: 0.732s, data_time: 0.136s, total_loss: 15.4, iou_loss: 3.6, l1_loss: 2.6, conf_loss: 7.7, cls_loss: 1.5, lr: 7.056e-05, size: 384, ETA: 13:49:53
  729. 2024-02-18 22:20:33 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 220/250, mem: 3871Mb, iter_time: 0.535s, data_time: 0.246s, total_loss: 13.0, iou_loss: 3.8, l1_loss: 2.1, conf_loss: 5.7, cls_loss: 1.5, lr: 7.744e-05, size: 192, ETA: 13:42:23
  730. 2024-02-18 22:20:41 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 230/250, mem: 3871Mb, iter_time: 0.789s, data_time: 0.484s, total_loss: 12.2, iou_loss: 3.8, l1_loss: 2.1, conf_loss: 4.9, cls_loss: 1.4, lr: 8.464e-05, size: 160, ETA: 13:49:15
  731. 2024-02-18 22:20:46 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 240/250, mem: 3871Mb, iter_time: 0.481s, data_time: 0.085s, total_loss: 13.3, iou_loss: 3.5, l1_loss: 2.3, conf_loss: 5.9, cls_loss: 1.6, lr: 9.216e-05, size: 256, ETA: 13:39:34
  732. 2024-02-18 22:20:54 | INFO | yolox.core.trainer:257 - epoch: 1/300, iter: 250/250, mem: 3871Mb, iter_time: 0.793s, data_time: 0.375s, total_loss: 12.8, iou_loss: 3.5, l1_loss: 2.4, conf_loss: 5.5, cls_loss: 1.4, lr: 1.000e-04, size: 256, ETA: 13:46:12
  733. 2024-02-18 22:20:54 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  734. 2024-02-18 22:20:55 | INFO | yolox.core.trainer:199 - ---> start train epoch2
  735. 2024-02-18 22:21:02 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 10/250, mem: 3871Mb, iter_time: 0.654s, data_time: 0.285s, total_loss: 12.2, iou_loss: 4.0, l1_loss: 2.5, conf_loss: 4.6, cls_loss: 1.2, lr: 1.082e-04, size: 96, ETA: 13:45:39
  736. 2024-02-18 22:21:08 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 20/250, mem: 3871Mb, iter_time: 0.663s, data_time: 0.098s, total_loss: 14.2, iou_loss: 3.4, l1_loss: 2.4, conf_loss: 6.9, cls_loss: 1.5, lr: 1.166e-04, size: 320, ETA: 13:45:32
  737. 2024-02-18 22:21:17 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 30/250, mem: 3871Mb, iter_time: 0.885s, data_time: 0.272s, total_loss: 13.8, iou_loss: 3.2, l1_loss: 2.5, conf_loss: 6.8, cls_loss: 1.3, lr: 1.254e-04, size: 352, ETA: 13:55:18
  738. 2024-02-18 22:21:23 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 40/250, mem: 3871Mb, iter_time: 0.629s, data_time: 0.245s, total_loss: 12.3, iou_loss: 3.3, l1_loss: 2.3, conf_loss: 5.3, cls_loss: 1.4, lr: 1.346e-04, size: 256, ETA: 13:53:24
  739. 2024-02-18 22:21:30 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 50/250, mem: 3871Mb, iter_time: 0.627s, data_time: 0.188s, total_loss: 12.2, iou_loss: 3.1, l1_loss: 2.4, conf_loss: 5.3, cls_loss: 1.3, lr: 1.440e-04, size: 288, ETA: 13:51:31
  740. 2024-02-18 22:21:39 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 60/250, mem: 3871Mb, iter_time: 0.933s, data_time: 0.552s, total_loss: 11.7, iou_loss: 3.3, l1_loss: 2.1, conf_loss: 4.8, cls_loss: 1.5, lr: 1.538e-04, size: 192, ETA: 14:02:04
  741. 2024-02-18 22:21:44 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 70/250, mem: 3871Mb, iter_time: 0.462s, data_time: 0.111s, total_loss: 11.4, iou_loss: 3.3, l1_loss: 2.2, conf_loss: 4.7, cls_loss: 1.3, lr: 1.638e-04, size: 224, ETA: 13:53:36
  742. 2024-02-18 22:21:52 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 80/250, mem: 3871Mb, iter_time: 0.811s, data_time: 0.379s, total_loss: 12.1, iou_loss: 3.2, l1_loss: 2.2, conf_loss: 5.4, cls_loss: 1.3, lr: 1.742e-04, size: 256, ETA: 13:58:49
  743. 2024-02-18 22:22:00 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 90/250, mem: 3871Mb, iter_time: 0.797s, data_time: 0.211s, total_loss: 12.9, iou_loss: 3.2, l1_loss: 2.5, conf_loss: 5.9, cls_loss: 1.4, lr: 1.850e-04, size: 352, ETA: 14:03:13
  744. 2024-02-18 22:22:05 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 100/250, mem: 3871Mb, iter_time: 0.501s, data_time: 0.088s, total_loss: 11.2, iou_loss: 2.9, l1_loss: 2.2, conf_loss: 4.7, cls_loss: 1.4, lr: 1.960e-04, size: 256, ETA: 13:56:49
  745. 2024-02-18 22:22:14 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 110/250, mem: 3871Mb, iter_time: 0.917s, data_time: 0.264s, total_loss: 13.5, iou_loss: 2.9, l1_loss: 2.5, conf_loss: 6.5, cls_loss: 1.5, lr: 2.074e-04, size: 384, ETA: 14:05:08
  746. 2024-02-18 22:22:22 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 120/250, mem: 3871Mb, iter_time: 0.765s, data_time: 0.001s, total_loss: 12.5, iou_loss: 2.7, l1_loss: 2.4, conf_loss: 5.9, cls_loss: 1.4, lr: 2.190e-04, size: 416, ETA: 14:07:54
  747. 2024-02-18 22:22:27 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 130/250, mem: 3871Mb, iter_time: 0.517s, data_time: 0.114s, total_loss: 11.2, iou_loss: 3.3, l1_loss: 1.9, conf_loss: 4.6, cls_loss: 1.3, lr: 2.310e-04, size: 128, ETA: 14:02:24
  748. 2024-02-18 22:22:36 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 140/250, mem: 3871Mb, iter_time: 0.876s, data_time: 0.542s, total_loss: 10.8, iou_loss: 3.1, l1_loss: 1.9, conf_loss: 4.4, cls_loss: 1.3, lr: 2.434e-04, size: 160, ETA: 14:08:36
  749. 2024-02-18 22:22:41 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 150/250, mem: 3871Mb, iter_time: 0.518s, data_time: 0.126s, total_loss: 10.9, iou_loss: 3.0, l1_loss: 2.2, conf_loss: 4.4, cls_loss: 1.3, lr: 2.560e-04, size: 224, ETA: 14:03:23
  750. 2024-02-18 22:22:50 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 160/250, mem: 3871Mb, iter_time: 0.977s, data_time: 0.239s, total_loss: 12.5, iou_loss: 2.9, l1_loss: 2.4, conf_loss: 5.9, cls_loss: 1.3, lr: 2.690e-04, size: 416, ETA: 14:12:20
  751. 2024-02-18 22:22:57 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 170/250, mem: 3871Mb, iter_time: 0.608s, data_time: 0.145s, total_loss: 11.6, iou_loss: 2.8, l1_loss: 2.3, conf_loss: 5.2, cls_loss: 1.4, lr: 2.822e-04, size: 288, ETA: 14:09:56
  752. 2024-02-18 22:23:04 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 180/250, mem: 3871Mb, iter_time: 0.713s, data_time: 0.133s, total_loss: 11.8, iou_loss: 2.8, l1_loss: 2.5, conf_loss: 5.3, cls_loss: 1.3, lr: 2.958e-04, size: 352, ETA: 14:10:39
  753. 2024-02-18 22:23:11 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 190/250, mem: 3871Mb, iter_time: 0.691s, data_time: 0.401s, total_loss: 10.7, iou_loss: 3.0, l1_loss: 1.9, conf_loss: 4.4, cls_loss: 1.3, lr: 3.098e-04, size: 160, ETA: 14:10:43
  754. 2024-02-18 22:23:17 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 200/250, mem: 3871Mb, iter_time: 0.610s, data_time: 0.001s, total_loss: 11.8, iou_loss: 2.8, l1_loss: 2.4, conf_loss: 5.3, cls_loss: 1.3, lr: 3.240e-04, size: 384, ETA: 14:08:32
  755. 2024-02-18 22:23:23 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 210/250, mem: 3871Mb, iter_time: 0.654s, data_time: 0.248s, total_loss: 10.7, iou_loss: 2.8, l1_loss: 2.1, conf_loss: 4.5, cls_loss: 1.3, lr: 3.386e-04, size: 256, ETA: 14:07:39
  756. 2024-02-18 22:23:32 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 220/250, mem: 3871Mb, iter_time: 0.848s, data_time: 0.508s, total_loss: 10.6, iou_loss: 3.2, l1_loss: 2.0, conf_loss: 4.2, cls_loss: 1.3, lr: 3.534e-04, size: 128, ETA: 14:11:55
  757. 2024-02-18 22:23:39 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 230/250, mem: 3871Mb, iter_time: 0.738s, data_time: 0.008s, total_loss: 11.9, iou_loss: 2.7, l1_loss: 2.5, conf_loss: 5.5, cls_loss: 1.3, lr: 3.686e-04, size: 416, ETA: 14:13:09
  758. 2024-02-18 22:23:46 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 240/250, mem: 3871Mb, iter_time: 0.724s, data_time: 0.009s, total_loss: 11.9, iou_loss: 2.6, l1_loss: 2.3, conf_loss: 5.7, cls_loss: 1.4, lr: 3.842e-04, size: 416, ETA: 14:13:58
  759. 2024-02-18 22:23:51 | INFO | yolox.core.trainer:257 - epoch: 2/300, iter: 250/250, mem: 3871Mb, iter_time: 0.462s, data_time: 0.179s, total_loss: 11.3, iou_loss: 3.4, l1_loss: 2.0, conf_loss: 4.5, cls_loss: 1.4, lr: 4.000e-04, size: 128, ETA: 14:08:15
  760. 2024-02-18 22:23:51 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  761. 2024-02-18 22:23:52 | INFO | yolox.core.trainer:199 - ---> start train epoch3
  762. 2024-02-18 22:23:56 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 10/250, mem: 3871Mb, iter_time: 0.373s, data_time: 0.087s, total_loss: 10.3, iou_loss: 3.2, l1_loss: 2.0, conf_loss: 3.9, cls_loss: 1.2, lr: 4.162e-04, size: 128, ETA: 14:00:35
  763. 2024-02-18 22:24:06 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 20/250, mem: 3871Mb, iter_time: 0.981s, data_time: 0.269s, total_loss: 12.2, iou_loss: 2.7, l1_loss: 2.4, conf_loss: 5.9, cls_loss: 1.2, lr: 4.326e-04, size: 416, ETA: 14:07:44
  764. 2024-02-18 22:24:12 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 30/250, mem: 3871Mb, iter_time: 0.623s, data_time: 0.001s, total_loss: 11.3, iou_loss: 2.6, l1_loss: 2.1, conf_loss: 5.2, cls_loss: 1.3, lr: 4.494e-04, size: 384, ETA: 14:06:13
  765. 2024-02-18 22:24:18 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 40/250, mem: 3871Mb, iter_time: 0.627s, data_time: 0.059s, total_loss: 11.5, iou_loss: 2.8, l1_loss: 2.2, conf_loss: 5.2, cls_loss: 1.2, lr: 4.666e-04, size: 352, ETA: 14:04:50
  766. 2024-02-18 22:24:25 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 50/250, mem: 3871Mb, iter_time: 0.676s, data_time: 0.324s, total_loss: 10.7, iou_loss: 2.8, l1_loss: 2.1, conf_loss: 4.6, cls_loss: 1.1, lr: 4.840e-04, size: 224, ETA: 14:04:36
  767. 2024-02-18 22:24:30 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 60/250, mem: 3871Mb, iter_time: 0.489s, data_time: 0.147s, total_loss: 9.8, iou_loss: 2.8, l1_loss: 2.0, conf_loss: 4.0, cls_loss: 1.1, lr: 5.018e-04, size: 224, ETA: 14:00:14
  768. 2024-02-18 22:24:36 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 70/250, mem: 3871Mb, iter_time: 0.643s, data_time: 0.373s, total_loss: 10.4, iou_loss: 3.3, l1_loss: 1.9, conf_loss: 3.9, cls_loss: 1.3, lr: 5.198e-04, size: 96, ETA: 13:59:23
  769. 2024-02-18 22:24:44 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 80/250, mem: 3871Mb, iter_time: 0.745s, data_time: 0.293s, total_loss: 10.7, iou_loss: 2.8, l1_loss: 2.0, conf_loss: 4.6, cls_loss: 1.3, lr: 5.382e-04, size: 288, ETA: 14:00:43
  770. 2024-02-18 22:24:51 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 90/250, mem: 3871Mb, iter_time: 0.773s, data_time: 0.054s, total_loss: 11.2, iou_loss: 2.5, l1_loss: 2.3, conf_loss: 5.2, cls_loss: 1.2, lr: 5.570e-04, size: 416, ETA: 14:02:37
  771. 2024-02-18 22:24:57 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 100/250, mem: 3871Mb, iter_time: 0.546s, data_time: 0.200s, total_loss: 10.1, iou_loss: 2.8, l1_loss: 2.1, conf_loss: 4.2, cls_loss: 1.1, lr: 5.760e-04, size: 224, ETA: 13:59:45
  772. 2024-02-18 22:25:02 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 110/250, mem: 3871Mb, iter_time: 0.494s, data_time: 0.240s, total_loss: 10.0, iou_loss: 3.2, l1_loss: 2.0, conf_loss: 3.8, cls_loss: 1.0, lr: 5.954e-04, size: 96, ETA: 13:55:55
  773. 2024-02-18 22:25:08 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 120/250, mem: 3871Mb, iter_time: 0.578s, data_time: 0.302s, total_loss: 9.2, iou_loss: 3.1, l1_loss: 1.8, conf_loss: 3.4, cls_loss: 1.0, lr: 6.150e-04, size: 96, ETA: 13:53:52
  774. 2024-02-18 22:25:16 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 130/250, mem: 3871Mb, iter_time: 0.869s, data_time: 0.417s, total_loss: 10.5, iou_loss: 2.7, l1_loss: 2.1, conf_loss: 4.5, cls_loss: 1.2, lr: 6.350e-04, size: 288, ETA: 13:57:37
  775. 2024-02-18 22:25:24 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 140/250, mem: 3871Mb, iter_time: 0.725s, data_time: 0.030s, total_loss: 11.2, iou_loss: 2.5, l1_loss: 2.2, conf_loss: 5.3, cls_loss: 1.1, lr: 6.554e-04, size: 416, ETA: 13:58:27
  776. 2024-02-18 22:25:30 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 150/250, mem: 3871Mb, iter_time: 0.627s, data_time: 0.031s, total_loss: 10.8, iou_loss: 2.5, l1_loss: 2.1, conf_loss: 4.9, cls_loss: 1.2, lr: 6.760e-04, size: 384, ETA: 13:57:24
  777. 2024-02-18 22:25:36 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 160/250, mem: 3871Mb, iter_time: 0.610s, data_time: 0.278s, total_loss: 10.0, iou_loss: 2.6, l1_loss: 2.0, conf_loss: 4.3, cls_loss: 1.1, lr: 6.970e-04, size: 224, ETA: 13:56:03
  778. 2024-02-18 22:25:40 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 170/250, mem: 3871Mb, iter_time: 0.397s, data_time: 0.133s, total_loss: 10.2, iou_loss: 3.1, l1_loss: 1.9, conf_loss: 3.9, cls_loss: 1.2, lr: 7.182e-04, size: 128, ETA: 13:50:48
  779. 2024-02-18 22:25:49 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 180/250, mem: 3871Mb, iter_time: 0.884s, data_time: 0.443s, total_loss: 10.3, iou_loss: 2.5, l1_loss: 1.9, conf_loss: 4.6, cls_loss: 1.3, lr: 7.398e-04, size: 288, ETA: 13:54:34
  780. 2024-02-18 22:25:54 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 190/250, mem: 3871Mb, iter_time: 0.544s, data_time: 0.292s, total_loss: 9.7, iou_loss: 2.9, l1_loss: 1.8, conf_loss: 3.9, cls_loss: 1.1, lr: 7.618e-04, size: 128, ETA: 13:52:07
  781. 2024-02-18 22:25:59 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 200/250, mem: 3871Mb, iter_time: 0.527s, data_time: 0.281s, total_loss: 10.1, iou_loss: 3.3, l1_loss: 1.9, conf_loss: 3.9, cls_loss: 1.0, lr: 7.840e-04, size: 96, ETA: 13:49:27
  782. 2024-02-18 22:26:07 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 210/250, mem: 3871Mb, iter_time: 0.780s, data_time: 0.450s, total_loss: 10.0, iou_loss: 2.7, l1_loss: 1.9, conf_loss: 4.2, cls_loss: 1.2, lr: 8.066e-04, size: 224, ETA: 13:51:15
  783. 2024-02-18 22:26:13 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 220/250, mem: 3871Mb, iter_time: 0.607s, data_time: 0.029s, total_loss: 10.7, iou_loss: 2.6, l1_loss: 2.0, conf_loss: 4.8, cls_loss: 1.3, lr: 8.294e-04, size: 352, ETA: 13:50:02
  784. 2024-02-18 22:26:21 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 230/250, mem: 3871Mb, iter_time: 0.735s, data_time: 0.108s, total_loss: 10.8, iou_loss: 2.5, l1_loss: 2.1, conf_loss: 4.9, cls_loss: 1.5, lr: 8.526e-04, size: 384, ETA: 13:51:01
  785. 2024-02-18 22:26:27 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 240/250, mem: 3871Mb, iter_time: 0.632s, data_time: 0.236s, total_loss: 9.6, iou_loss: 2.6, l1_loss: 2.0, conf_loss: 4.0, cls_loss: 1.1, lr: 8.762e-04, size: 256, ETA: 13:50:14
  786. 2024-02-18 22:26:32 | INFO | yolox.core.trainer:257 - epoch: 3/300, iter: 250/250, mem: 3871Mb, iter_time: 0.467s, data_time: 0.077s, total_loss: 10.1, iou_loss: 2.6, l1_loss: 1.9, conf_loss: 4.4, cls_loss: 1.2, lr: 9.000e-04, size: 256, ETA: 13:46:45
  787. 2024-02-18 22:26:32 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  788. 2024-02-18 22:26:33 | INFO | yolox.core.trainer:199 - ---> start train epoch4
  789. 2024-02-18 22:26:40 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 10/250, mem: 3871Mb, iter_time: 0.750s, data_time: 0.157s, total_loss: 10.2, iou_loss: 2.4, l1_loss: 2.0, conf_loss: 4.5, cls_loss: 1.3, lr: 9.242e-04, size: 352, ETA: 13:47:59
  790. 2024-02-18 22:26:46 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 20/250, mem: 3871Mb, iter_time: 0.600s, data_time: 0.152s, total_loss: 9.8, iou_loss: 2.4, l1_loss: 2.0, conf_loss: 4.1, cls_loss: 1.2, lr: 9.486e-04, size: 288, ETA: 13:46:45
  791. 2024-02-18 22:26:51 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 30/250, mem: 3871Mb, iter_time: 0.513s, data_time: 0.209s, total_loss: 10.0, iou_loss: 2.9, l1_loss: 1.9, conf_loss: 3.8, cls_loss: 1.4, lr: 9.734e-04, size: 160, ETA: 13:44:11
  792. 2024-02-18 22:26:59 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 40/250, mem: 3871Mb, iter_time: 0.780s, data_time: 0.433s, total_loss: 9.4, iou_loss: 2.6, l1_loss: 1.8, conf_loss: 3.9, cls_loss: 1.1, lr: 9.986e-04, size: 224, ETA: 13:45:51
  793. 2024-02-18 22:27:04 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 50/250, mem: 3871Mb, iter_time: 0.516s, data_time: 0.191s, total_loss: 10.0, iou_loss: 2.8, l1_loss: 2.0, conf_loss: 4.0, cls_loss: 1.2, lr: 1.024e-03, size: 192, ETA: 13:43:24
  794. 2024-02-18 22:27:11 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 60/250, mem: 3871Mb, iter_time: 0.675s, data_time: 0.282s, total_loss: 9.8, iou_loss: 2.5, l1_loss: 1.9, conf_loss: 4.2, cls_loss: 1.2, lr: 1.050e-03, size: 256, ETA: 13:43:25
  795. 2024-02-18 22:27:18 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 70/250, mem: 3871Mb, iter_time: 0.731s, data_time: 0.216s, total_loss: 10.9, iou_loss: 2.6, l1_loss: 2.0, conf_loss: 4.9, cls_loss: 1.3, lr: 1.076e-03, size: 320, ETA: 13:44:17
  796. 2024-02-18 22:27:24 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 80/250, mem: 3871Mb, iter_time: 0.610s, data_time: 0.028s, total_loss: 9.9, iou_loss: 2.4, l1_loss: 1.8, conf_loss: 4.4, cls_loss: 1.3, lr: 1.102e-03, size: 352, ETA: 13:43:20
  797. 2024-02-18 22:27:31 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 90/250, mem: 3871Mb, iter_time: 0.649s, data_time: 0.302s, total_loss: 9.4, iou_loss: 2.5, l1_loss: 1.7, conf_loss: 3.8, cls_loss: 1.3, lr: 1.129e-03, size: 224, ETA: 13:42:58
  798. 2024-02-18 22:27:36 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 100/250, mem: 3871Mb, iter_time: 0.544s, data_time: 0.230s, total_loss: 8.9, iou_loss: 2.6, l1_loss: 1.7, conf_loss: 3.4, cls_loss: 1.1, lr: 1.156e-03, size: 192, ETA: 13:41:06
  799. 2024-02-18 22:27:43 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 110/250, mem: 3871Mb, iter_time: 0.660s, data_time: 0.203s, total_loss: 9.8, iou_loss: 2.5, l1_loss: 1.9, conf_loss: 4.1, cls_loss: 1.2, lr: 1.183e-03, size: 288, ETA: 13:40:55
  800. 2024-02-18 22:27:50 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 120/250, mem: 3871Mb, iter_time: 0.674s, data_time: 0.357s, total_loss: 9.5, iou_loss: 2.8, l1_loss: 1.8, conf_loss: 3.7, cls_loss: 1.2, lr: 1.211e-03, size: 192, ETA: 13:40:57
  801. 2024-02-18 22:27:56 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 130/250, mem: 3871Mb, iter_time: 0.620s, data_time: 0.265s, total_loss: 8.9, iou_loss: 2.7, l1_loss: 1.7, conf_loss: 3.4, cls_loss: 1.0, lr: 1.239e-03, size: 160, ETA: 13:40:13
  802. 2024-02-18 22:28:04 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 140/250, mem: 3871Mb, iter_time: 0.814s, data_time: 0.255s, total_loss: 9.4, iou_loss: 2.4, l1_loss: 1.7, conf_loss: 4.2, cls_loss: 1.1, lr: 1.267e-03, size: 320, ETA: 13:42:11
  803. 2024-02-18 22:28:11 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 150/250, mem: 3871Mb, iter_time: 0.730s, data_time: 0.406s, total_loss: 9.4, iou_loss: 3.0, l1_loss: 1.6, conf_loss: 3.7, cls_loss: 1.1, lr: 1.296e-03, size: 96, ETA: 13:42:57
  804. 2024-02-18 22:28:18 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 160/250, mem: 3871Mb, iter_time: 0.672s, data_time: 0.158s, total_loss: 10.2, iou_loss: 2.6, l1_loss: 2.0, conf_loss: 4.5, cls_loss: 1.2, lr: 1.325e-03, size: 288, ETA: 13:42:55
  805. 2024-02-18 22:28:27 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 170/250, mem: 3871Mb, iter_time: 0.850s, data_time: 0.508s, total_loss: 8.7, iou_loss: 2.6, l1_loss: 1.7, conf_loss: 3.4, cls_loss: 1.0, lr: 1.354e-03, size: 160, ETA: 13:45:15
  806. 2024-02-18 22:28:34 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 180/250, mem: 3871Mb, iter_time: 0.772s, data_time: 0.002s, total_loss: 10.1, iou_loss: 2.4, l1_loss: 1.9, conf_loss: 4.7, cls_loss: 1.2, lr: 1.384e-03, size: 416, ETA: 13:46:31
  807. 2024-02-18 22:28:42 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 190/250, mem: 3871Mb, iter_time: 0.788s, data_time: 0.119s, total_loss: 11.0, iou_loss: 2.5, l1_loss: 2.0, conf_loss: 5.4, cls_loss: 1.2, lr: 1.414e-03, size: 384, ETA: 13:47:58
  808. 2024-02-18 22:28:49 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 200/250, mem: 3871Mb, iter_time: 0.714s, data_time: 0.160s, total_loss: 9.8, iou_loss: 2.5, l1_loss: 1.8, conf_loss: 4.2, cls_loss: 1.3, lr: 1.444e-03, size: 320, ETA: 13:48:25
  809. 2024-02-18 22:28:56 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 210/250, mem: 3871Mb, iter_time: 0.671s, data_time: 0.121s, total_loss: 9.3, iou_loss: 2.3, l1_loss: 1.8, conf_loss: 4.1, cls_loss: 1.1, lr: 1.475e-03, size: 320, ETA: 13:48:18
  810. 2024-02-18 22:29:03 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 220/250, mem: 3871Mb, iter_time: 0.722s, data_time: 0.362s, total_loss: 8.8, iou_loss: 2.7, l1_loss: 1.7, conf_loss: 3.3, cls_loss: 1.1, lr: 1.505e-03, size: 160, ETA: 13:48:50
  811. 2024-02-18 22:29:11 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 230/250, mem: 3871Mb, iter_time: 0.756s, data_time: 0.362s, total_loss: 9.4, iou_loss: 2.4, l1_loss: 1.7, conf_loss: 3.9, cls_loss: 1.3, lr: 1.537e-03, size: 224, ETA: 13:49:47
  812. 2024-02-18 22:29:16 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 240/250, mem: 3871Mb, iter_time: 0.528s, data_time: 0.180s, total_loss: 10.5, iou_loss: 2.8, l1_loss: 2.0, conf_loss: 4.5, cls_loss: 1.3, lr: 1.568e-03, size: 192, ETA: 13:47:52
  813. 2024-02-18 22:29:25 | INFO | yolox.core.trainer:257 - epoch: 4/300, iter: 250/250, mem: 3871Mb, iter_time: 0.873s, data_time: 0.450s, total_loss: 9.1, iou_loss: 2.4, l1_loss: 1.8, conf_loss: 3.8, cls_loss: 1.2, lr: 1.600e-03, size: 256, ETA: 13:50:15
  814. 2024-02-18 22:29:25 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  815. 2024-02-18 22:29:26 | INFO | yolox.core.trainer:199 - ---> start train epoch5
  816. 2024-02-18 22:29:32 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 10/250, mem: 3871Mb, iter_time: 0.572s, data_time: 0.010s, total_loss: 9.3, iou_loss: 2.3, l1_loss: 1.8, conf_loss: 4.1, cls_loss: 1.1, lr: 1.632e-03, size: 352, ETA: 13:48:53
  817. 2024-02-18 22:29:37 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 20/250, mem: 3871Mb, iter_time: 0.533s, data_time: 0.236s, total_loss: 9.4, iou_loss: 2.7, l1_loss: 1.8, conf_loss: 3.8, cls_loss: 1.1, lr: 1.665e-03, size: 192, ETA: 13:47:05
  818. 2024-02-18 22:29:45 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 30/250, mem: 3871Mb, iter_time: 0.762s, data_time: 0.362s, total_loss: 9.3, iou_loss: 2.5, l1_loss: 1.8, conf_loss: 3.8, cls_loss: 1.2, lr: 1.697e-03, size: 256, ETA: 13:48:04
  819. 2024-02-18 22:29:51 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 40/250, mem: 3871Mb, iter_time: 0.600s, data_time: 0.270s, total_loss: 8.6, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 3.4, cls_loss: 1.2, lr: 1.731e-03, size: 192, ETA: 13:47:06
  820. 2024-02-18 22:29:58 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 50/250, mem: 3871Mb, iter_time: 0.748s, data_time: 0.214s, total_loss: 9.1, iou_loss: 2.3, l1_loss: 1.7, conf_loss: 4.1, cls_loss: 1.1, lr: 1.764e-03, size: 320, ETA: 13:47:54
  821. 2024-02-18 22:30:05 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 60/250, mem: 3871Mb, iter_time: 0.659s, data_time: 0.131s, total_loss: 9.2, iou_loss: 2.4, l1_loss: 1.8, conf_loss: 3.9, cls_loss: 1.1, lr: 1.798e-03, size: 320, ETA: 13:47:38
  822. 2024-02-18 22:30:13 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 70/250, mem: 3871Mb, iter_time: 0.779s, data_time: 0.144s, total_loss: 9.2, iou_loss: 2.2, l1_loss: 1.8, conf_loss: 4.1, cls_loss: 1.2, lr: 1.832e-03, size: 384, ETA: 13:48:46
  823. 2024-02-18 22:30:20 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 80/250, mem: 3871Mb, iter_time: 0.715s, data_time: 0.300s, total_loss: 8.8, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 3.8, cls_loss: 1.1, lr: 1.866e-03, size: 256, ETA: 13:49:09
  824. 2024-02-18 22:30:26 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 90/250, mem: 3871Mb, iter_time: 0.601s, data_time: 0.307s, total_loss: 9.2, iou_loss: 3.0, l1_loss: 1.7, conf_loss: 3.4, cls_loss: 1.0, lr: 1.901e-03, size: 96, ETA: 13:48:13
  825. 2024-02-18 22:30:34 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 100/250, mem: 3871Mb, iter_time: 0.812s, data_time: 0.268s, total_loss: 9.7, iou_loss: 2.5, l1_loss: 1.7, conf_loss: 4.2, cls_loss: 1.2, lr: 1.936e-03, size: 288, ETA: 13:49:40
  826. 2024-02-18 22:30:40 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 110/250, mem: 3871Mb, iter_time: 0.636s, data_time: 0.106s, total_loss: 8.7, iou_loss: 2.2, l1_loss: 1.6, conf_loss: 3.9, cls_loss: 1.1, lr: 1.971e-03, size: 320, ETA: 13:49:08
  827. 2024-02-18 22:30:47 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 120/250, mem: 3871Mb, iter_time: 0.703s, data_time: 0.380s, total_loss: 8.6, iou_loss: 2.6, l1_loss: 1.5, conf_loss: 3.3, cls_loss: 1.1, lr: 2.007e-03, size: 128, ETA: 13:49:21
  828. 2024-02-18 22:30:55 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 130/250, mem: 3871Mb, iter_time: 0.801s, data_time: 0.358s, total_loss: 8.9, iou_loss: 2.3, l1_loss: 1.8, conf_loss: 3.8, cls_loss: 1.0, lr: 2.043e-03, size: 256, ETA: 13:50:37
  829. 2024-02-18 22:31:02 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 140/250, mem: 3871Mb, iter_time: 0.640s, data_time: 0.049s, total_loss: 9.4, iou_loss: 2.2, l1_loss: 1.7, conf_loss: 4.5, cls_loss: 1.1, lr: 2.079e-03, size: 352, ETA: 13:50:08
  830. 2024-02-18 22:31:09 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 150/250, mem: 3871Mb, iter_time: 0.699s, data_time: 0.213s, total_loss: 9.1, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 3.9, cls_loss: 1.3, lr: 2.116e-03, size: 288, ETA: 13:50:17
  831. 2024-02-18 22:31:17 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 160/250, mem: 3871Mb, iter_time: 0.813s, data_time: 0.327s, total_loss: 8.6, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 3.6, cls_loss: 1.0, lr: 2.153e-03, size: 288, ETA: 13:51:39
  832. 2024-02-18 22:31:23 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 170/250, mem: 3871Mb, iter_time: 0.604s, data_time: 0.129s, total_loss: 9.2, iou_loss: 2.4, l1_loss: 1.7, conf_loss: 3.9, cls_loss: 1.3, lr: 2.190e-03, size: 288, ETA: 13:50:47
  833. 2024-02-18 22:31:30 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 180/250, mem: 3871Mb, iter_time: 0.739s, data_time: 0.327s, total_loss: 8.3, iou_loss: 2.5, l1_loss: 1.4, conf_loss: 3.3, cls_loss: 1.1, lr: 2.228e-03, size: 192, ETA: 13:51:20
  834. 2024-02-18 22:31:37 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 190/250, mem: 3871Mb, iter_time: 0.708s, data_time: 0.343s, total_loss: 8.4, iou_loss: 2.7, l1_loss: 1.5, conf_loss: 3.1, cls_loss: 1.1, lr: 2.266e-03, size: 160, ETA: 13:51:33
  835. 2024-02-18 22:31:48 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 200/250, mem: 3871Mb, iter_time: 1.073s, data_time: 0.322s, total_loss: 9.3, iou_loss: 2.3, l1_loss: 1.6, conf_loss: 4.4, cls_loss: 1.0, lr: 2.304e-03, size: 416, ETA: 13:55:30
  836. 2024-02-18 22:31:54 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 210/250, mem: 3871Mb, iter_time: 0.635s, data_time: 0.049s, total_loss: 8.8, iou_loss: 2.2, l1_loss: 1.7, conf_loss: 3.8, cls_loss: 1.2, lr: 2.343e-03, size: 352, ETA: 13:54:57
  837. 2024-02-18 22:32:00 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 220/250, mem: 3871Mb, iter_time: 0.591s, data_time: 0.002s, total_loss: 9.2, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 4.0, cls_loss: 1.2, lr: 2.381e-03, size: 352, ETA: 13:53:57
  838. 2024-02-18 22:32:08 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 230/250, mem: 3871Mb, iter_time: 0.763s, data_time: 0.132s, total_loss: 9.1, iou_loss: 2.3, l1_loss: 1.7, conf_loss: 3.9, cls_loss: 1.2, lr: 2.421e-03, size: 384, ETA: 13:54:41
  839. 2024-02-18 22:32:17 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 240/250, mem: 3871Mb, iter_time: 0.863s, data_time: 0.220s, total_loss: 9.2, iou_loss: 2.2, l1_loss: 1.6, conf_loss: 4.2, cls_loss: 1.2, lr: 2.460e-03, size: 352, ETA: 13:56:23
  840. 2024-02-18 22:32:22 | INFO | yolox.core.trainer:257 - epoch: 5/300, iter: 250/250, mem: 3871Mb, iter_time: 0.538s, data_time: 0.220s, total_loss: 8.5, iou_loss: 2.7, l1_loss: 1.5, conf_loss: 3.3, cls_loss: 1.1, lr: 2.500e-03, size: 128, ETA: 13:54:53
  841. 2024-02-18 22:32:22 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  842. 2024-02-18 22:32:23 | INFO | yolox.core.trainer:199 - ---> start train epoch6
  843. 2024-02-18 22:32:29 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 10/250, mem: 3871Mb, iter_time: 0.594s, data_time: 0.185s, total_loss: 8.9, iou_loss: 2.6, l1_loss: 1.6, conf_loss: 3.6, cls_loss: 1.2, lr: 2.500e-03, size: 224, ETA: 13:53:56
  844. 2024-02-18 22:32:35 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 20/250, mem: 3871Mb, iter_time: 0.615s, data_time: 0.195s, total_loss: 8.9, iou_loss: 2.4, l1_loss: 1.7, conf_loss: 3.7, cls_loss: 1.1, lr: 2.500e-03, size: 256, ETA: 13:53:12
  845. 2024-02-18 22:32:43 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 30/250, mem: 3871Mb, iter_time: 0.797s, data_time: 0.404s, total_loss: 8.4, iou_loss: 2.4, l1_loss: 1.4, conf_loss: 3.6, cls_loss: 1.0, lr: 2.500e-03, size: 224, ETA: 13:54:14
  846. 2024-02-18 22:32:52 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 40/250, mem: 3871Mb, iter_time: 0.857s, data_time: 0.243s, total_loss: 8.5, iou_loss: 2.1, l1_loss: 1.6, conf_loss: 3.7, cls_loss: 1.1, lr: 2.500e-03, size: 352, ETA: 13:55:49
  847. 2024-02-18 22:32:57 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 50/250, mem: 3871Mb, iter_time: 0.518s, data_time: 0.100s, total_loss: 8.9, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 3.7, cls_loss: 1.2, lr: 2.500e-03, size: 256, ETA: 13:54:09
  848. 2024-02-18 22:33:03 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 60/250, mem: 3871Mb, iter_time: 0.620s, data_time: 0.303s, total_loss: 8.1, iou_loss: 2.6, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.0, lr: 2.500e-03, size: 128, ETA: 13:53:30
  849. 2024-02-18 22:33:13 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 70/250, mem: 3871Mb, iter_time: 0.993s, data_time: 0.257s, total_loss: 9.1, iou_loss: 2.2, l1_loss: 1.6, conf_loss: 4.2, cls_loss: 1.2, lr: 2.500e-03, size: 416, ETA: 13:56:18
  850. 2024-02-18 22:33:18 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 80/250, mem: 3871Mb, iter_time: 0.520s, data_time: 0.117s, total_loss: 8.3, iou_loss: 2.3, l1_loss: 1.5, conf_loss: 3.4, cls_loss: 1.2, lr: 2.500e-03, size: 256, ETA: 13:54:42
  851. 2024-02-18 22:33:25 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 90/250, mem: 3871Mb, iter_time: 0.690s, data_time: 0.213s, total_loss: 9.1, iou_loss: 2.3, l1_loss: 1.6, conf_loss: 4.1, cls_loss: 1.1, lr: 2.500e-03, size: 288, ETA: 13:54:41
  852. 2024-02-18 22:33:30 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 100/250, mem: 3871Mb, iter_time: 0.458s, data_time: 0.173s, total_loss: 8.2, iou_loss: 2.6, l1_loss: 1.6, conf_loss: 3.0, cls_loss: 1.0, lr: 2.500e-03, size: 128, ETA: 13:52:33
  853. 2024-02-18 22:33:38 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 110/250, mem: 3871Mb, iter_time: 0.818s, data_time: 0.352s, total_loss: 8.7, iou_loss: 2.3, l1_loss: 1.5, conf_loss: 3.8, cls_loss: 1.1, lr: 2.500e-03, size: 288, ETA: 13:53:42
  854. 2024-02-18 22:33:45 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 120/250, mem: 3871Mb, iter_time: 0.668s, data_time: 0.372s, total_loss: 8.1, iou_loss: 2.5, l1_loss: 1.5, conf_loss: 3.1, cls_loss: 1.0, lr: 2.500e-03, size: 128, ETA: 13:53:29
  855. 2024-02-18 22:33:51 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 130/250, mem: 3871Mb, iter_time: 0.656s, data_time: 0.152s, total_loss: 9.3, iou_loss: 2.4, l1_loss: 1.6, conf_loss: 4.1, cls_loss: 1.2, lr: 2.500e-03, size: 320, ETA: 13:53:10
  856. 2024-02-18 22:33:58 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 140/250, mem: 3871Mb, iter_time: 0.673s, data_time: 0.165s, total_loss: 8.3, iou_loss: 2.2, l1_loss: 1.5, conf_loss: 3.5, cls_loss: 1.1, lr: 2.500e-03, size: 320, ETA: 13:53:00
  857. 2024-02-18 22:34:06 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 150/250, mem: 3871Mb, iter_time: 0.802s, data_time: 0.184s, total_loss: 8.5, iou_loss: 2.1, l1_loss: 1.5, conf_loss: 3.8, cls_loss: 1.2, lr: 2.500e-03, size: 384, ETA: 13:53:57
  858. 2024-02-18 22:34:11 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 160/250, mem: 3871Mb, iter_time: 0.551s, data_time: 0.164s, total_loss: 8.6, iou_loss: 2.4, l1_loss: 1.5, conf_loss: 3.6, cls_loss: 1.1, lr: 2.500e-03, size: 256, ETA: 13:52:43
  859. 2024-02-18 22:34:19 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 170/250, mem: 3871Mb, iter_time: 0.740s, data_time: 0.141s, total_loss: 8.0, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 3.5, cls_loss: 1.1, lr: 2.500e-03, size: 384, ETA: 13:53:08
  860. 2024-02-18 22:34:25 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 180/250, mem: 3871Mb, iter_time: 0.574s, data_time: 0.117s, total_loss: 7.7, iou_loss: 2.1, l1_loss: 1.4, conf_loss: 3.2, cls_loss: 1.0, lr: 2.500e-03, size: 288, ETA: 13:52:08
  861. 2024-02-18 22:34:31 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 190/250, mem: 3871Mb, iter_time: 0.636s, data_time: 0.344s, total_loss: 8.5, iou_loss: 2.7, l1_loss: 1.5, conf_loss: 3.2, cls_loss: 1.2, lr: 2.500e-03, size: 128, ETA: 13:51:39
  862. 2024-02-18 22:34:39 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 200/250, mem: 3871Mb, iter_time: 0.808s, data_time: 0.440s, total_loss: 8.3, iou_loss: 2.4, l1_loss: 1.5, conf_loss: 3.3, cls_loss: 1.0, lr: 2.500e-03, size: 224, ETA: 13:52:38
  863. 2024-02-18 22:34:46 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 210/250, mem: 3871Mb, iter_time: 0.660s, data_time: 0.028s, total_loss: 8.6, iou_loss: 2.0, l1_loss: 1.5, conf_loss: 4.0, cls_loss: 1.1, lr: 2.500e-03, size: 384, ETA: 13:52:22
  864. 2024-02-18 22:34:55 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 220/250, mem: 3871Mb, iter_time: 0.886s, data_time: 0.140s, total_loss: 7.8, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 3.4, cls_loss: 1.0, lr: 2.500e-03, size: 416, ETA: 13:53:58
  865. 2024-02-18 22:35:01 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 230/250, mem: 3871Mb, iter_time: 0.624s, data_time: 0.313s, total_loss: 9.3, iou_loss: 3.0, l1_loss: 1.7, conf_loss: 3.6, cls_loss: 1.0, lr: 2.500e-03, size: 96, ETA: 13:53:23
  866. 2024-02-18 22:35:07 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 240/250, mem: 3871Mb, iter_time: 0.617s, data_time: 0.222s, total_loss: 8.3, iou_loss: 2.3, l1_loss: 1.5, conf_loss: 3.4, cls_loss: 1.1, lr: 2.500e-03, size: 256, ETA: 13:52:45
  867. 2024-02-18 22:35:13 | INFO | yolox.core.trainer:257 - epoch: 6/300, iter: 250/250, mem: 3871Mb, iter_time: 0.559s, data_time: 0.225s, total_loss: 7.9, iou_loss: 2.4, l1_loss: 1.5, conf_loss: 3.0, cls_loss: 1.0, lr: 2.500e-03, size: 192, ETA: 13:51:39
  868. 2024-02-18 22:35:13 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  869. 2024-02-18 22:35:14 | INFO | yolox.core.trainer:199 - ---> start train epoch7
  870. 2024-02-18 22:35:19 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 10/250, mem: 3871Mb, iter_time: 0.591s, data_time: 0.184s, total_loss: 7.9, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.2, lr: 2.500e-03, size: 256, ETA: 13:50:50
  871. 2024-02-18 22:35:26 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 20/250, mem: 3871Mb, iter_time: 0.699s, data_time: 0.358s, total_loss: 8.0, iou_loss: 2.4, l1_loss: 1.5, conf_loss: 3.0, cls_loss: 1.1, lr: 2.500e-03, size: 192, ETA: 13:50:53
  872. 2024-02-18 22:35:35 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 30/250, mem: 3871Mb, iter_time: 0.846s, data_time: 0.124s, total_loss: 8.7, iou_loss: 2.1, l1_loss: 1.6, conf_loss: 3.9, cls_loss: 1.1, lr: 2.500e-03, size: 416, ETA: 13:52:07
  873. 2024-02-18 22:35:40 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 40/250, mem: 3871Mb, iter_time: 0.524s, data_time: 0.172s, total_loss: 7.9, iou_loss: 2.3, l1_loss: 1.4, conf_loss: 3.0, cls_loss: 1.2, lr: 2.500e-03, size: 224, ETA: 13:50:45
  874. 2024-02-18 22:35:48 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 50/250, mem: 3871Mb, iter_time: 0.757s, data_time: 0.138s, total_loss: 8.6, iou_loss: 2.2, l1_loss: 1.6, conf_loss: 3.7, cls_loss: 1.1, lr: 2.500e-03, size: 384, ETA: 13:51:16
  875. 2024-02-18 22:35:54 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 60/250, mem: 3871Mb, iter_time: 0.585s, data_time: 0.291s, total_loss: 7.7, iou_loss: 2.4, l1_loss: 1.4, conf_loss: 2.9, cls_loss: 1.0, lr: 2.500e-03, size: 128, ETA: 13:50:25
  876. 2024-02-18 22:36:00 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 70/250, mem: 3871Mb, iter_time: 0.610s, data_time: 0.291s, total_loss: 8.3, iou_loss: 2.3, l1_loss: 1.4, conf_loss: 3.5, cls_loss: 1.1, lr: 2.500e-03, size: 192, ETA: 13:49:46
  877. 2024-02-18 22:36:04 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 80/250, mem: 3871Mb, iter_time: 0.472s, data_time: 0.197s, total_loss: 7.6, iou_loss: 2.4, l1_loss: 1.4, conf_loss: 2.8, cls_loss: 1.0, lr: 2.500e-03, size: 128, ETA: 13:48:03
  878. 2024-02-18 22:36:12 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 90/250, mem: 3871Mb, iter_time: 0.743s, data_time: 0.408s, total_loss: 7.6, iou_loss: 2.3, l1_loss: 1.4, conf_loss: 2.9, cls_loss: 1.0, lr: 2.500e-03, size: 160, ETA: 13:48:27
  879. 2024-02-18 22:36:19 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 100/250, mem: 3871Mb, iter_time: 0.748s, data_time: 0.402s, total_loss: 8.4, iou_loss: 2.6, l1_loss: 1.5, conf_loss: 3.2, cls_loss: 1.1, lr: 2.500e-03, size: 160, ETA: 13:48:53
  880. 2024-02-18 22:36:26 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 110/250, mem: 3871Mb, iter_time: 0.654s, data_time: 0.296s, total_loss: 7.9, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.1, lr: 2.500e-03, size: 224, ETA: 13:48:35
  881. 2024-02-18 22:36:33 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 120/250, mem: 3871Mb, iter_time: 0.726s, data_time: 0.216s, total_loss: inf, iou_loss: 2.3, l1_loss: inf, conf_loss: 3.6, cls_loss: 1.1, lr: 2.500e-03, size: 320, ETA: 13:48:51
  882. 2024-02-18 22:36:37 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 130/250, mem: 3871Mb, iter_time: 0.394s, data_time: 0.103s, total_loss: 7.4, iou_loss: 2.3, l1_loss: 1.3, conf_loss: 2.8, cls_loss: 1.0, lr: 2.500e-03, size: 160, ETA: 13:46:36
  883. 2024-02-18 22:36:46 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 140/250, mem: 3871Mb, iter_time: 0.915s, data_time: 0.333s, total_loss: 8.2, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.5, cls_loss: 1.1, lr: 2.500e-03, size: 352, ETA: 13:48:16
  884. 2024-02-18 22:36:53 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 150/250, mem: 3871Mb, iter_time: 0.640s, data_time: 0.253s, total_loss: 7.8, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.1, lr: 2.500e-03, size: 256, ETA: 13:47:53
  885. 2024-02-18 22:36:58 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 160/250, mem: 3871Mb, iter_time: 0.583s, data_time: 0.113s, total_loss: 7.3, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 2.8, cls_loss: 1.1, lr: 2.500e-03, size: 288, ETA: 13:47:04
  886. 2024-02-18 22:37:06 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 170/250, mem: 3871Mb, iter_time: 0.766s, data_time: 0.157s, total_loss: 7.4, iou_loss: 1.9, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.0, lr: 2.500e-03, size: 384, ETA: 13:47:37
  887. 2024-02-18 22:37:11 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 180/250, mem: 3871Mb, iter_time: 0.515s, data_time: 0.252s, total_loss: 8.8, iou_loss: 2.8, l1_loss: 1.5, conf_loss: 3.5, cls_loss: 1.0, lr: 2.500e-03, size: 96, ETA: 13:46:19
  888. 2024-02-18 22:37:18 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 190/250, mem: 3871Mb, iter_time: 0.657s, data_time: 0.359s, total_loss: 7.9, iou_loss: 2.6, l1_loss: 1.4, conf_loss: 2.8, cls_loss: 1.1, lr: 2.500e-03, size: 160, ETA: 13:46:04
  889. 2024-02-18 22:37:25 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 200/250, mem: 3871Mb, iter_time: 0.739s, data_time: 0.232s, total_loss: 8.4, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.7, cls_loss: 1.1, lr: 2.500e-03, size: 320, ETA: 13:46:24
  890. 2024-02-18 22:37:31 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 210/250, mem: 3871Mb, iter_time: 0.551s, data_time: 0.102s, total_loss: 7.5, iou_loss: 2.1, l1_loss: 1.4, conf_loss: 3.0, cls_loss: 1.1, lr: 2.500e-03, size: 288, ETA: 13:45:24
  891. 2024-02-18 22:37:39 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 220/250, mem: 3871Mb, iter_time: 0.832s, data_time: 0.218s, total_loss: 8.2, iou_loss: 2.1, l1_loss: 1.4, conf_loss: 3.5, cls_loss: 1.1, lr: 2.500e-03, size: 384, ETA: 13:46:24
  892. 2024-02-18 22:37:45 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 230/250, mem: 3871Mb, iter_time: 0.627s, data_time: 0.172s, total_loss: 8.0, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.3, cls_loss: 1.1, lr: 2.500e-03, size: 288, ETA: 13:45:56
  893. 2024-02-18 22:37:50 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 240/250, mem: 3871Mb, iter_time: 0.497s, data_time: 0.196s, total_loss: 8.4, iou_loss: 2.8, l1_loss: 1.5, conf_loss: 3.1, cls_loss: 1.1, lr: 2.500e-03, size: 128, ETA: 13:44:34
  894. 2024-02-18 22:37:58 | INFO | yolox.core.trainer:257 - epoch: 7/300, iter: 250/250, mem: 3871Mb, iter_time: 0.725s, data_time: 0.311s, total_loss: 7.5, iou_loss: 2.1, l1_loss: 1.2, conf_loss: 3.2, cls_loss: 1.0, lr: 2.499e-03, size: 256, ETA: 13:44:48
  895. 2024-02-18 22:37:58 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  896. 2024-02-18 22:37:59 | INFO | yolox.core.trainer:199 - ---> start train epoch8
  897. 2024-02-18 22:38:04 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 10/250, mem: 3871Mb, iter_time: 0.563s, data_time: 0.228s, total_loss: 7.7, iou_loss: 2.4, l1_loss: 1.4, conf_loss: 2.9, cls_loss: 1.0, lr: 2.499e-03, size: 192, ETA: 13:43:54
  898. 2024-02-18 22:38:12 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 20/250, mem: 3871Mb, iter_time: 0.814s, data_time: 0.092s, total_loss: 8.4, iou_loss: 2.2, l1_loss: 1.5, conf_loss: 3.7, cls_loss: 1.0, lr: 2.499e-03, size: 416, ETA: 13:44:45
  899. 2024-02-18 22:38:18 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 30/250, mem: 3871Mb, iter_time: 0.568s, data_time: 0.102s, total_loss: 8.2, iou_loss: 2.2, l1_loss: 1.3, conf_loss: 3.5, cls_loss: 1.1, lr: 2.499e-03, size: 288, ETA: 13:43:54
  900. 2024-02-18 22:38:23 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 40/250, mem: 3871Mb, iter_time: 0.476s, data_time: 0.151s, total_loss: 8.7, iou_loss: 2.6, l1_loss: 1.5, conf_loss: 3.4, cls_loss: 1.1, lr: 2.499e-03, size: 192, ETA: 13:42:26
  901. 2024-02-18 22:38:32 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 50/250, mem: 3871Mb, iter_time: 0.875s, data_time: 0.350s, total_loss: 7.5, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 1.1, lr: 2.499e-03, size: 320, ETA: 13:43:41
  902. 2024-02-18 22:38:38 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 60/250, mem: 3871Mb, iter_time: 0.653s, data_time: 0.075s, total_loss: 7.3, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 2.9, cls_loss: 1.0, lr: 2.499e-03, size: 352, ETA: 13:43:25
  903. 2024-02-18 22:38:43 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 70/250, mem: 3871Mb, iter_time: 0.486s, data_time: 0.200s, total_loss: 8.7, iou_loss: 2.8, l1_loss: 1.6, conf_loss: 3.3, cls_loss: 1.0, lr: 2.499e-03, size: 128, ETA: 13:42:02
  904. 2024-02-18 22:38:51 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 80/250, mem: 3871Mb, iter_time: 0.829s, data_time: 0.243s, total_loss: 7.7, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.2, cls_loss: 1.0, lr: 2.499e-03, size: 352, ETA: 13:42:57
  905. 2024-02-18 22:38:57 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 90/250, mem: 3871Mb, iter_time: 0.572s, data_time: 0.289s, total_loss: 8.3, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.0, lr: 2.499e-03, size: 96, ETA: 13:42:10
  906. 2024-02-18 22:39:04 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 100/250, mem: 3871Mb, iter_time: 0.701s, data_time: 0.245s, total_loss: 7.7, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.0, cls_loss: 1.1, lr: 2.499e-03, size: 288, ETA: 13:42:14
  907. 2024-02-18 22:39:12 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 110/250, mem: 3871Mb, iter_time: 0.756s, data_time: 0.126s, total_loss: 7.3, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 3.1, cls_loss: 0.9, lr: 2.499e-03, size: 384, ETA: 13:42:39
  908. 2024-02-18 22:39:16 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 120/250, mem: 3871Mb, iter_time: 0.390s, data_time: 0.115s, total_loss: 8.2, iou_loss: 2.8, l1_loss: 1.5, conf_loss: 2.9, cls_loss: 1.0, lr: 2.499e-03, size: 96, ETA: 13:40:41
  909. 2024-02-18 22:39:25 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 130/250, mem: 3871Mb, iter_time: 0.915s, data_time: 0.393s, total_loss: 8.1, iou_loss: 2.1, l1_loss: 1.6, conf_loss: 3.3, cls_loss: 1.1, lr: 2.499e-03, size: 320, ETA: 13:42:08
  910. 2024-02-18 22:39:30 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 140/250, mem: 3871Mb, iter_time: 0.553s, data_time: 0.290s, total_loss: 8.9, iou_loss: 3.2, l1_loss: 1.5, conf_loss: 3.1, cls_loss: 1.1, lr: 2.499e-03, size: 96, ETA: 13:41:14
  911. 2024-02-18 22:39:36 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 150/250, mem: 3871Mb, iter_time: 0.620s, data_time: 0.153s, total_loss: 7.9, iou_loss: 2.3, l1_loss: 1.4, conf_loss: 3.2, cls_loss: 1.1, lr: 2.499e-03, size: 288, ETA: 13:40:47
  912. 2024-02-18 22:39:42 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 160/250, mem: 3871Mb, iter_time: 0.574s, data_time: 0.255s, total_loss: 7.4, iou_loss: 2.4, l1_loss: 1.4, conf_loss: 2.8, cls_loss: 1.0, lr: 2.499e-03, size: 192, ETA: 13:40:02
  913. 2024-02-18 22:39:51 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 170/250, mem: 3871Mb, iter_time: 0.917s, data_time: 0.191s, total_loss: 8.1, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 3.7, cls_loss: 1.0, lr: 2.499e-03, size: 416, ETA: 13:41:28
  914. 2024-02-18 22:39:59 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 180/250, mem: 3871Mb, iter_time: 0.727s, data_time: 0.001s, total_loss: 7.3, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 2.9, cls_loss: 1.0, lr: 2.499e-03, size: 416, ETA: 13:41:41
  915. 2024-02-18 22:40:03 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 190/250, mem: 3871Mb, iter_time: 0.444s, data_time: 0.160s, total_loss: 8.2, iou_loss: 2.6, l1_loss: 1.4, conf_loss: 3.0, cls_loss: 1.1, lr: 2.499e-03, size: 128, ETA: 13:40:07
  916. 2024-02-18 22:40:10 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 200/250, mem: 3871Mb, iter_time: 0.645s, data_time: 0.082s, total_loss: 8.2, iou_loss: 2.2, l1_loss: 1.5, conf_loss: 3.4, cls_loss: 1.1, lr: 2.499e-03, size: 352, ETA: 13:39:50
  917. 2024-02-18 22:40:16 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 210/250, mem: 3871Mb, iter_time: 0.677s, data_time: 0.316s, total_loss: 8.3, iou_loss: 2.3, l1_loss: 1.5, conf_loss: 3.4, cls_loss: 1.2, lr: 2.499e-03, size: 224, ETA: 13:39:45
  918. 2024-02-18 22:40:24 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 220/250, mem: 3871Mb, iter_time: 0.744s, data_time: 0.237s, total_loss: 7.2, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 2.9, cls_loss: 1.1, lr: 2.499e-03, size: 320, ETA: 13:40:04
  919. 2024-02-18 22:40:30 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 230/250, mem: 3871Mb, iter_time: 0.590s, data_time: 0.030s, total_loss: 7.4, iou_loss: 1.9, l1_loss: 1.4, conf_loss: 3.0, cls_loss: 1.1, lr: 2.499e-03, size: 352, ETA: 13:39:27
  920. 2024-02-18 22:40:35 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 240/250, mem: 3871Mb, iter_time: 0.557s, data_time: 0.262s, total_loss: 8.1, iou_loss: 2.5, l1_loss: 1.3, conf_loss: 3.2, cls_loss: 1.0, lr: 2.499e-03, size: 160, ETA: 13:38:37
  921. 2024-02-18 22:40:43 | INFO | yolox.core.trainer:257 - epoch: 8/300, iter: 250/250, mem: 3871Mb, iter_time: 0.738s, data_time: 0.403s, total_loss: 6.9, iou_loss: 2.2, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 1.0, lr: 2.499e-03, size: 160, ETA: 13:38:54
  922. 2024-02-18 22:40:43 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  923. 2024-02-18 22:40:44 | INFO | yolox.core.trainer:199 - ---> start train epoch9
  924. 2024-02-18 22:40:49 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 10/250, mem: 3871Mb, iter_time: 0.486s, data_time: 0.201s, total_loss: 7.7, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 2.6, cls_loss: 1.0, lr: 2.499e-03, size: 96, ETA: 13:37:40
  925. 2024-02-18 22:40:56 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 20/250, mem: 3871Mb, iter_time: 0.725s, data_time: 0.410s, total_loss: 8.2, iou_loss: 2.7, l1_loss: 1.5, conf_loss: 3.0, cls_loss: 1.1, lr: 2.499e-03, size: 128, ETA: 13:37:52
  926. 2024-02-18 22:41:00 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 30/250, mem: 3871Mb, iter_time: 0.393s, data_time: 0.115s, total_loss: 7.6, iou_loss: 2.6, l1_loss: 1.4, conf_loss: 2.6, cls_loss: 1.0, lr: 2.499e-03, size: 96, ETA: 13:36:05
  927. 2024-02-18 22:41:09 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 40/250, mem: 3871Mb, iter_time: 0.885s, data_time: 0.535s, total_loss: 8.1, iou_loss: 2.6, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 1.2, lr: 2.499e-03, size: 128, ETA: 13:37:15
  928. 2024-02-18 22:41:16 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 50/250, mem: 3871Mb, iter_time: 0.771s, data_time: 0.492s, total_loss: 7.6, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 2.5, cls_loss: 1.1, lr: 2.499e-03, size: 96, ETA: 13:37:43
  929. 2024-02-18 22:41:21 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 60/250, mem: 3871Mb, iter_time: 0.510s, data_time: 0.002s, total_loss: 7.6, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.1, lr: 2.499e-03, size: 320, ETA: 13:36:39
  930. 2024-02-18 22:41:30 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 70/250, mem: 3871Mb, iter_time: 0.890s, data_time: 0.186s, total_loss: 8.7, iou_loss: 2.2, l1_loss: 1.5, conf_loss: 3.9, cls_loss: 1.2, lr: 2.499e-03, size: 416, ETA: 13:37:49
  931. 2024-02-18 22:41:36 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 80/250, mem: 3871Mb, iter_time: 0.566s, data_time: 0.221s, total_loss: 7.4, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 2.9, cls_loss: 1.1, lr: 2.499e-03, size: 224, ETA: 13:37:05
  932. 2024-02-18 22:41:41 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 90/250, mem: 3871Mb, iter_time: 0.515s, data_time: 0.171s, total_loss: 7.1, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 2.7, cls_loss: 1.0, lr: 2.499e-03, size: 224, ETA: 13:36:03
  933. 2024-02-18 22:41:50 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 100/250, mem: 3871Mb, iter_time: 0.842s, data_time: 0.428s, total_loss: 7.6, iou_loss: 2.1, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.0, lr: 2.499e-03, size: 256, ETA: 13:36:56
  934. 2024-02-18 22:41:55 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 110/250, mem: 3871Mb, iter_time: 0.552s, data_time: 0.002s, total_loss: 7.4, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 1.1, lr: 2.499e-03, size: 320, ETA: 13:36:07
  935. 2024-02-18 22:42:02 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 120/250, mem: 3871Mb, iter_time: 0.696s, data_time: 0.325s, total_loss: 7.3, iou_loss: 2.3, l1_loss: 1.2, conf_loss: 2.8, cls_loss: 1.0, lr: 2.498e-03, size: 224, ETA: 13:36:09
  936. 2024-02-18 22:42:10 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 130/250, mem: 3871Mb, iter_time: 0.800s, data_time: 0.338s, total_loss: 7.9, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.2, lr: 2.498e-03, size: 288, ETA: 13:36:46
  937. 2024-02-18 22:42:16 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 140/250, mem: 3871Mb, iter_time: 0.623s, data_time: 0.001s, total_loss: 7.1, iou_loss: 1.9, l1_loss: 1.3, conf_loss: 2.9, cls_loss: 1.0, lr: 2.498e-03, size: 384, ETA: 13:36:23
  938. 2024-02-18 22:42:21 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 150/250, mem: 3871Mb, iter_time: 0.496s, data_time: 0.234s, total_loss: 8.1, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 2.9, cls_loss: 1.1, lr: 2.498e-03, size: 96, ETA: 13:35:16
  939. 2024-02-18 22:42:29 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 160/250, mem: 3871Mb, iter_time: 0.726s, data_time: 0.353s, total_loss: 8.1, iou_loss: 2.3, l1_loss: 1.4, conf_loss: 3.3, cls_loss: 1.1, lr: 2.498e-03, size: 224, ETA: 13:35:28
  940. 2024-02-18 22:42:34 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 170/250, mem: 3871Mb, iter_time: 0.541s, data_time: 0.205s, total_loss: 7.4, iou_loss: 2.2, l1_loss: 1.3, conf_loss: 2.8, cls_loss: 1.1, lr: 2.498e-03, size: 192, ETA: 13:34:37
  941. 2024-02-18 22:42:42 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 180/250, mem: 3871Mb, iter_time: 0.790s, data_time: 0.432s, total_loss: 7.4, iou_loss: 2.2, l1_loss: 1.3, conf_loss: 2.8, cls_loss: 1.1, lr: 2.498e-03, size: 192, ETA: 13:35:10
  942. 2024-02-18 22:42:46 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 190/250, mem: 3871Mb, iter_time: 0.450s, data_time: 0.098s, total_loss: 7.1, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 2.7, cls_loss: 1.0, lr: 2.498e-03, size: 224, ETA: 13:33:50
  943. 2024-02-18 22:42:55 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 200/250, mem: 3871Mb, iter_time: 0.851s, data_time: 0.363s, total_loss: 7.4, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 1.1, lr: 2.498e-03, size: 288, ETA: 13:34:43
  944. 2024-02-18 22:43:02 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 210/250, mem: 3871Mb, iter_time: 0.733s, data_time: 0.423s, total_loss: 7.0, iou_loss: 2.4, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 0.9, lr: 2.498e-03, size: 128, ETA: 13:34:56
  945. 2024-02-18 22:43:07 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 220/250, mem: 3871Mb, iter_time: 0.508s, data_time: 0.059s, total_loss: 8.1, iou_loss: 2.2, l1_loss: 1.4, conf_loss: 3.5, cls_loss: 1.1, lr: 2.498e-03, size: 288, ETA: 13:33:56
  946. 2024-02-18 22:43:14 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 230/250, mem: 3871Mb, iter_time: 0.682s, data_time: 0.345s, total_loss: 7.1, iou_loss: 2.2, l1_loss: 1.3, conf_loss: 2.6, cls_loss: 1.0, lr: 2.498e-03, size: 192, ETA: 13:33:53
  947. 2024-02-18 22:43:21 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 240/250, mem: 3871Mb, iter_time: 0.721s, data_time: 0.264s, total_loss: 7.6, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 3.2, cls_loss: 1.0, lr: 2.498e-03, size: 288, ETA: 13:34:03
  948. 2024-02-18 22:43:30 | INFO | yolox.core.trainer:257 - epoch: 9/300, iter: 250/250, mem: 3871Mb, iter_time: 0.818s, data_time: 0.111s, total_loss: 7.8, iou_loss: 2.0, l1_loss: 1.5, conf_loss: 3.2, cls_loss: 1.1, lr: 2.498e-03, size: 416, ETA: 13:34:43
  949. 2024-02-18 22:43:30 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  950. 2024-02-18 22:43:31 | INFO | yolox.core.trainer:199 - ---> start train epoch10
  951. 2024-02-18 22:43:36 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 10/250, mem: 3871Mb, iter_time: 0.502s, data_time: 0.001s, total_loss: 6.8, iou_loss: 1.9, l1_loss: 1.3, conf_loss: 2.7, cls_loss: 0.9, lr: 2.498e-03, size: 320, ETA: 13:33:42
  952. 2024-02-18 22:43:39 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 20/250, mem: 3871Mb, iter_time: 0.358s, data_time: 0.056s, total_loss: 7.6, iou_loss: 2.3, l1_loss: 1.3, conf_loss: 2.9, cls_loss: 1.1, lr: 2.498e-03, size: 160, ETA: 13:31:55
  953. 2024-02-18 22:43:48 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 30/250, mem: 3871Mb, iter_time: 0.900s, data_time: 0.364s, total_loss: 7.2, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 2.9, cls_loss: 1.1, lr: 2.498e-03, size: 320, ETA: 13:33:02
  954. 2024-02-18 22:43:55 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 40/250, mem: 3871Mb, iter_time: 0.668s, data_time: 0.338s, total_loss: 7.7, iou_loss: 2.4, l1_loss: 1.5, conf_loss: 2.8, cls_loss: 1.0, lr: 2.498e-03, size: 192, ETA: 13:32:54
  955. 2024-02-18 22:43:59 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 50/250, mem: 3871Mb, iter_time: 0.426s, data_time: 0.126s, total_loss: 7.9, iou_loss: 2.6, l1_loss: 1.4, conf_loss: 2.8, cls_loss: 1.1, lr: 2.498e-03, size: 128, ETA: 13:31:30
  956. 2024-02-18 22:44:08 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 60/250, mem: 3871Mb, iter_time: 0.886s, data_time: 0.346s, total_loss: 7.1, iou_loss: 2.0, l1_loss: 1.2, conf_loss: 2.8, cls_loss: 1.1, lr: 2.498e-03, size: 320, ETA: 13:32:31
  957. 2024-02-18 22:44:14 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 70/250, mem: 3871Mb, iter_time: 0.617s, data_time: 0.303s, total_loss: 7.0, iou_loss: 2.3, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 1.0, lr: 2.498e-03, size: 160, ETA: 13:32:08
  958. 2024-02-18 22:44:21 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 80/250, mem: 3871Mb, iter_time: 0.692s, data_time: 0.081s, total_loss: 7.6, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.1, lr: 2.498e-03, size: 384, ETA: 13:32:08
  959. 2024-02-18 22:44:27 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 90/250, mem: 3871Mb, iter_time: 0.577s, data_time: 0.309s, total_loss: 8.4, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 3.2, cls_loss: 1.2, lr: 2.498e-03, size: 96, ETA: 13:31:32
  960. 2024-02-18 22:44:31 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 100/250, mem: 3871Mb, iter_time: 0.440s, data_time: 0.125s, total_loss: 6.9, iou_loss: 2.2, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 1.0, lr: 2.498e-03, size: 192, ETA: 13:30:14
  961. 2024-02-18 22:44:40 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 110/250, mem: 3871Mb, iter_time: 0.867s, data_time: 0.388s, total_loss: 6.8, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 2.6, cls_loss: 1.0, lr: 2.498e-03, size: 288, ETA: 13:31:08
  962. 2024-02-18 22:44:47 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 120/250, mem: 3871Mb, iter_time: 0.713s, data_time: 0.314s, total_loss: 6.9, iou_loss: 2.0, l1_loss: 1.2, conf_loss: 2.8, cls_loss: 0.9, lr: 2.497e-03, size: 256, ETA: 13:31:15
  963. 2024-02-18 22:44:52 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 130/250, mem: 3871Mb, iter_time: 0.519s, data_time: 0.064s, total_loss: 7.6, iou_loss: 2.1, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.1, lr: 2.497e-03, size: 288, ETA: 13:30:22
  964. 2024-02-18 22:45:00 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 140/250, mem: 3871Mb, iter_time: 0.784s, data_time: 0.267s, total_loss: 7.3, iou_loss: 1.9, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 1.0, lr: 2.497e-03, size: 320, ETA: 13:30:50
  965. 2024-02-18 22:45:06 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 150/250, mem: 3871Mb, iter_time: 0.629s, data_time: 0.122s, total_loss: 6.8, iou_loss: 2.0, l1_loss: 1.3, conf_loss: 2.6, cls_loss: 1.0, lr: 2.497e-03, size: 320, ETA: 13:30:31
  966. 2024-02-18 22:45:12 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 160/250, mem: 3871Mb, iter_time: 0.587s, data_time: 0.254s, total_loss: 6.7, iou_loss: 2.0, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 0.9, lr: 2.497e-03, size: 224, ETA: 13:29:59
  967. 2024-02-18 22:45:19 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 170/250, mem: 3871Mb, iter_time: 0.678s, data_time: 0.390s, total_loss: 6.9, iou_loss: 2.3, l1_loss: 1.3, conf_loss: 2.3, cls_loss: 1.0, lr: 2.497e-03, size: 160, ETA: 13:29:55
  968. 2024-02-18 22:45:24 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 180/250, mem: 3871Mb, iter_time: 0.475s, data_time: 0.179s, total_loss: 7.0, iou_loss: 2.2, l1_loss: 1.3, conf_loss: 2.5, cls_loss: 1.0, lr: 2.497e-03, size: 192, ETA: 13:28:50
  969. 2024-02-18 22:45:33 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 190/250, mem: 3871Mb, iter_time: 0.935s, data_time: 0.313s, total_loss: 7.6, iou_loss: 2.0, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 1.0, lr: 2.497e-03, size: 384, ETA: 13:30:03
  970. 2024-02-18 22:45:39 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 200/250, mem: 3871Mb, iter_time: 0.626s, data_time: 0.269s, total_loss: 7.3, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 2.8, cls_loss: 1.1, lr: 2.497e-03, size: 224, ETA: 13:29:43
  971. 2024-02-18 22:45:46 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 210/250, mem: 3871Mb, iter_time: 0.661s, data_time: 0.135s, total_loss: 6.8, iou_loss: 2.0, l1_loss: 1.2, conf_loss: 2.7, cls_loss: 1.0, lr: 2.497e-03, size: 320, ETA: 13:29:34
  972. 2024-02-18 22:45:52 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 220/250, mem: 3871Mb, iter_time: 0.592s, data_time: 0.303s, total_loss: 7.2, iou_loss: 2.3, l1_loss: 1.3, conf_loss: 2.6, cls_loss: 1.1, lr: 2.497e-03, size: 160, ETA: 13:29:04
  973. 2024-02-18 22:45:58 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 230/250, mem: 3871Mb, iter_time: 0.621s, data_time: 0.330s, total_loss: 7.8, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 2.6, cls_loss: 1.1, lr: 2.497e-03, size: 96, ETA: 13:28:43
  974. 2024-02-18 22:46:06 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 240/250, mem: 3871Mb, iter_time: 0.755s, data_time: 0.129s, total_loss: 7.9, iou_loss: 2.1, l1_loss: 1.3, conf_loss: 3.4, cls_loss: 1.1, lr: 2.497e-03, size: 384, ETA: 13:29:02
  975. 2024-02-18 22:46:11 | INFO | yolox.core.trainer:257 - epoch: 10/300, iter: 250/250, mem: 3871Mb, iter_time: 0.571s, data_time: 0.284s, total_loss: 8.0, iou_loss: 2.5, l1_loss: 1.3, conf_loss: 3.1, cls_loss: 1.0, lr: 2.497e-03, size: 128, ETA: 13:28:26
  976. 2024-02-18 22:46:11 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet
  977. 100%|##########| 125/125 [00:32<00:00, 3.86it/s]
  978. 2024-02-18 22:46:45 | INFO | yolox.evaluators.coco_evaluator:235 - Evaluate in main process...
  979. 2024-02-18 22:46:52 | INFO | yolox.evaluators.coco_evaluator:268 - Loading and preparing results...
  980. 2024-02-18 22:46:54 | INFO | yolox.evaluators.coco_evaluator:268 - DONE (t=2.22s)
  981. 2024-02-18 22:46:54 | INFO | pycocotools.coco:366 - creating index...
  982. 2024-02-18 22:46:54 | INFO | pycocotools.coco:366 - index created!
  983. Running per image evaluation...
  984. Evaluate annotation type *bbox*
  985. COCOeval_opt.evaluate() finished in 1.51 seconds.
  986. Accumulating evaluation results...
  987. COCOeval_opt.accumulate() finished in 0.26 seconds.
  988. 2024-02-18 22:46:56 | INFO | yolox.core.trainer:349 -
  989. Average forward time: 4.75 ms, Average NMS time: 1.02 ms, Average inference time: 5.77 ms
  990. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.040
  991. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.101
  992. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.019
  993. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035
  994. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.045
  995. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.041
  996. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.041
  997. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.084
  998. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.107
  999. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.080
  1000. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.113
  1001. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.116
  1002. 2024-02-18 22:46:56 | INFO | yolox.core.trainer:359 - Save weights to ./YOLOX_outputs/yolox_regnet

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/129799
推荐阅读