赞
踩
这篇讲讲CyclicBarrier栅栏,从它的名字可以看出,它是可循环使用的。它的功能和CountDownLatch类似,也是让一组线程等待,然后一起开始往下执行。但是两者还是有几个区别
1. 等待的对象不同。CountDownLatch的一组线程等待的是一个事件,或者说是一个计数器归0的事件。而CyclicBarrier等待的对象是线程,只有线程都到齐了才往下执行
2. 使用方式不同,这个也是由等待的对象不同引起的,CountDownLatch需要调用await()来让线程等待,调用countDown()来修改状态,直到触发状态为0的事件。而CyclicBarrier只需要调用await()让线程等待,当调用await()方法的线程数满足条件,就自动唤醒所有线程往下执行
3. CyclicBarrier可以自动循环使用,当一次拦截被打开后,会自动创建下一个拦截。CountDownLatch的计数器归0后不能再次使用
4. 底层实现不同,CountDownLatch使用AQS来实现底层同步,CyclicBarrier基于更上层的ReetrantLock + Condition条件队列实现
5. 失效机制不同,在CountDownLatch等待的线程如果被中断或者超时取消,不会影响其他线程。而CyclicBarrier采用all-or-none的机制,要么全部不通过,要么全部都通过,也就是说一旦在CyclicBarrier等待的线程有一个被中断或者超时取消,那么其他所有在这个CyclicBarrier等待的线程都被唤醒,通过栅栏往下执行
6. CyclicBarrier支持线程全部通过之后的回调功能,通过传入一个Runnable对象,由最后一个到达的线程来执行。而CountDownLatch不支持回调机制
下面看看CyclicBarrier的源代码,它有一个内部类Generation来处理循环使用的问题,维护了一个broker状态表示当前的栅栏是否失效。如果失效,可以重置栅栏的状态。当栅栏被打破时,就设置当前generation的broker为true表示失效,并唤醒所有等待的线程,即all-or-none机制
- private static class Generation {
- boolean broken = false;
- }
-
- private void nextGeneration() {
- // signal completion of last generation
- trip.signalAll();
- // set up next generation
- count = parties;
- generation = new Generation();
- }
-
- private void breakBarrier() {
- generation.broken = true;
- count = parties;
- trip.signalAll();
- }
维护了一个ReentrantLock来作同步,并创建了一个相关的条件队列Condition,使用Condition的await()方法让线程在同一个条件队列等待,使用Condition.signalAll()唤醒所有在通过一条件队列等待的线程。
- /** The lock for guarding barrier entry */
- private final ReentrantLock lock = new ReentrantLock();
- /** Condition to wait on until tripped */
- private final Condition trip = lock.newCondition();
- /* The command to run when tripped */
- private final Runnable barrierCommand;
-
- public CyclicBarrier(int parties, Runnable barrierAction) {
- if (parties <= 0) throw new IllegalArgumentException();
- this.parties = parties;
- this.count = parties;
- this.barrierCommand = barrierAction;
- }
维护了一个count来计数,当await()方法被调用一次, count就减1,直到count为0打开栅栏。
private int count;
1. 进入锁相当于读volatile,会清空CPU缓存,强制从内存读取
2. 离开锁相当于写volatile,会把CPU写缓冲区的数据强制刷新到内存
CyclicBarrier常用支持普通的等待和限时的等待。最后都是落到了dowait()方法。
- public int await() throws InterruptedException, BrokenBarrierException {
- try {
- return dowait(false, 0L);
- } catch (TimeoutException toe) {
- throw new Error(toe); // cannot happen;
- }
- }
-
- public int await(long timeout, TimeUnit unit)
- throws InterruptedException,
- BrokenBarrierException,
- TimeoutException {
- return dowait(true, unit.toNanos(timeout));
- }
1. 必须先获取锁,保证了可见性,有序性,原子性
2. 判断当前栅栏的状态,如果已经失效,抛出BrokerBarrierException异常
3. 如果线程被中断,那么让栅栏失效,会唤醒所有等待线程往下执行
4. 执行一次dowait就对count减一,用index记录下当前线程执行是的count值作为索引
5. 如果index == 0表示是最后到达的线程,可以打开栅栏了。首先如果有回调,就执行回调。然后重置栅栏状态,使之可以循环使用,返回0
6. 如果index不为0,表示不是最后到达的线程,就轮询等待,这里支持了限时操作,使用了Condition条件队列的await()机制。直到超时或者栅栏被正常失效。栅栏失效后会使用Condition来唤醒所有在同一个条件队列等待的线程。
- private int dowait(boolean timed, long nanos)
- throws InterruptedException, BrokenBarrierException,
- TimeoutException {
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- final Generation g = generation;
-
- if (g.broken)
- throw new BrokenBarrierException();
-
- if (Thread.interrupted()) {
- breakBarrier();
- throw new InterruptedException();
- }
-
- int index = --count;
- if (index == 0) { // tripped
- boolean ranAction = false;
- try {
- final Runnable command = barrierCommand;
- if (command != null)
- command.run();
- ranAction = true;
- nextGeneration();
- return 0;
- } finally {
- if (!ranAction)
- breakBarrier();
- }
- }
-
- // loop until tripped, broken, interrupted, or timed out
- for (;;) {
- try {
- if (!timed)
- trip.await();
- else if (nanos > 0L)
- nanos = trip.awaitNanos(nanos);
- } catch (InterruptedException ie) {
- if (g == generation && ! g.broken) {
- breakBarrier();
- throw ie;
- } else {
- // We're about to finish waiting even if we had not
- // been interrupted, so this interrupt is deemed to
- // "belong" to subsequent execution.
- Thread.currentThread().interrupt();
- }
- }
-
- if (g.broken)
- throw new BrokenBarrierException();
-
- if (g != generation)
- return index;
-
- if (timed && nanos <= 0L) {
- breakBarrier();
- throw new TimeoutException();
- }
- }
- } finally {
- lock.unlock();
- }
- }
1. 创建一个5个容量的CyclicBarrier,并设置回调
2. 运行12个线程
- package com.lock.test;
-
- import java.util.concurrent.CyclicBarrier;
-
- public class CyclicBarrierUsecase {
- private CyclicBarrier barrier = new CyclicBarrier(5, new Runnable(){
-
- @Override
- public void run() {
- System.out.println("Callback is running");
- }
-
-
- });
-
- public void race() throws Exception{
- System.out.println("Thread " + Thread.currentThread().getName() + " is waiting the resource");
- barrier.await();
- System.out.println("Thread " + Thread.currentThread().getName() + " got the resource");
- }
-
- public static void main(String[] args){
- final CyclicBarrierUsecase usecase = new CyclicBarrierUsecase();
-
- for(int i = 0; i < 12; i++){
- Thread t = new Thread(new Runnable(){
-
- @Override
- public void run() {
- try {
- usecase.race();
- } catch (Exception e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- }
- }
-
- }, String.valueOf(i));
- t.start();
- }
- }
- }
1. 可以看到5个线程在等待,直到满5个线程到达之后打开栅栏,这5个线程往下执行,并执行回调
2. 栅栏被循环使用了,又有5个线程等待,直到满5个线程到达又打开栅栏往下执行,并执行回调
3. 栅栏又被循环使用,但是只有2个线程,不满5个,就一直等待
- Thread 0 is waiting the resource
- Thread 4 is waiting the resource
- Thread 5 is waiting the resource
- Thread 3 is waiting the resource
- Thread 2 is waiting the resource
- Callback is running
- Thread 1 is waiting the resource
- Thread 0 got the resource
- Thread 2 got the resource
- Thread 6 is waiting the resource
- Thread 7 is waiting the resource
- Thread 4 got the resource
- Thread 9 is waiting the resource
- Thread 8 is waiting the resource
- Thread 3 got the resource
- Thread 5 got the resource
- Callback is running
- Thread 8 got the resource
- Thread 1 got the resource
- Thread 7 got the resource
- Thread 6 got the resource
- Thread 10 is waiting the resource
- Thread 11 is waiting the resource
- Thread 9 got the resource
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。