赞
踩
在前面介绍的矢量运算和张量表达法的基础上,本文将主要介绍CFD中与张量相关的运算。从本文开始,如无特别说明,提到张量时均指的是二阶张量。
两个矢量的并矢积可以写作
也可以将并矢积看作是一个列向量与一个行向量相乘所得的矩阵:
根据这一运算规则,我们可以得到矢量的梯度,其结果是一个张量:
张量的运算与矩阵运算具有高度的一致性:
2. 标量乘以张量
3. 张量点乘矢量
根据这一运算规则,我们可以得到张量的散度,其结果是一个矢量:
4. 两个张量(或并矢)的点乘
按照矩阵乘法进行运算,其结果仍为张量:
上式中
5. 张量的双点积
两个张量的双点积的运算是基于以下两个矢量并矢积的双点乘运算规则:
上式中
将这一规则应用到笛卡尔坐标系的单位矢量上,可以得到:
上面仅列举了部分结果,其他单位矢量的双点积结果也容易得到。
由此可以得到,黏性力张量和速度梯度张量的双点积结果为:
以上用四篇小文章给出了CFD中常见的张量运算法则,在公式推导中还会涉及更多张量运算公式,但基本都可以通过以上这些基本法则来进行推导和证明,在后面文章用到时会进行简单说明。下一篇文章将给出推导N-S方程时会用到的几个积分定理。
[1] Moukalled, F., Mangani, L., and Darwish, M. The Finite Volume Method in Computational Fluid Dynamics : An Advanced Introduction with OpenFOAM and Matlab. 2016.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。