赞
踩
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from): first_iter = 0 tb_writer = prepare_output_and_logger(dataset) gaussians = GaussianModel(dataset.sh_degree) # 创建GaussianModel模型,给点云中的每个点去创建一个3D gaussian scene = Scene(dataset, gaussians) # 加载数据集和每张图片对应的camera的参数 gaussians.training_setup(opt) if checkpoint: #如果checkpoint非空,则加载checkpoint,恢复模型参数和优化参数 (model_params, first_iter) = torch.load(checkpoint) gaussians.restore(model_params, opt) #设置背景值,白色[1, 1, 1],否则[0, 0, 0] bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") #记录gpu运行时间 iter_start = torch.cuda.Event(enable_timing = True) iter_end = torch.cuda.Event(enable_timing = True) ####################迭代训练开始########################### viewpoint_stack = None ema_loss_for_log = 0.0 progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress") first_iter += 1 for iteration in range(first_iter, opt.iterations + 1): if network_gui.conn == None: network_gui.try_connect() while network_gui.conn != None: try: net_image_bytes = None custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive() if custom_cam != None: net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"] net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy()) network_gui.send(net_image_bytes, dataset.source_path) if do_training and ((iteration < int(opt.iterations)) or not keep_alive): break except Exception as e: network_gui.conn = None #记录开始时间 iter_start.record() # 对xyz的学习率进行调整 gaussians.update_learning_rate(iteration) # Every 1000 its we increase the levels of SH up to a maximum degree if iteration % 1000 == 0: gaussians.oneupSHdegree() # Pick a random Camera #随机选择一个图片及其相应的相机视角(内外参) if not viewpoint_stack: viewpoint_stack = scene.getTrainCameras().copy() viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) # Render,在debug_from步时,启动调试 if (iteration - 1) == debug_from: pipe.debug = True #随机背景与否 bg = torch.rand((3), device="cuda") if opt.random_background else background #render 函数参数一:上步随机选择的相机,参数二:高斯模型,参数三:管道参数,参数四:背景 render_pkg = render(viewpoint_cam, gaussians, pipe, bg) image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] # Loss gt_image = viewpoint_cam.original_image.cuda() Ll1 = l1_loss(image, gt_image) loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) loss.backward() #记录结束时间 iter_end.record() with torch.no_grad(): # Progress bar更新进度条,每10步更新一下后缀内容及进度 ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log if iteration % 10 == 0: progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"}) progress_bar.update(10) if iteration == opt.iterations: progress_bar.close() # Log and save training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background)) if (iteration in saving_iterations): print("\n[ITER {}] Saving Gaussians".format(iteration)) scene.save(iteration) # Densification if iteration < opt.densify_until_iter:#15000步以前 # Keep track of max radii in image-space for pruning gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter]) # 统计3D gaussian均值(xyz)的梯度, 用于对3D gaussians的克隆或者切分 gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter) #每100步进行下面的操作,对3D gaussians进行克隆或者切分, 并将opacity小于一定阈值的3D gaussians进行删除 if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0: size_threshold = 20 if iteration > opt.opacity_reset_interval else None gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold) #每3000步重设不透明度 if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter): gaussians.reset_opacity() # Optimizer step if iteration < opt.iterations:#30000步以前 gaussians.optimizer.step() gaussians.optimizer.zero_grad(set_to_none = True) if (iteration in checkpoint_iterations): print("\n[ITER {}] Saving Checkpoint".format(iteration)) torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth") ####################迭代训练结束########################### def prepare_output_and_logger(args): if not args.model_path: if os.getenv('OAR_JOB_ID'): unique_str=os.getenv('OAR_JOB_ID') else: unique_str = str(uuid.uuid4()) #生成一个随机的UUID,并取前十位作为输出目录名称 args.model_path = os.path.join("./output/", unique_str[0:10]) # Set up output folder print("Output folder: {}".format(args.model_path)) os.makedirs(args.model_path, exist_ok = True) #配置参数写入到cfg_args文件中 with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f: cfg_log_f.write(str(Namespace(**vars(args)))) # Create Tensorboard writer tb_writer = None if TENSORBOARD_FOUND: tb_writer = SummaryWriter(args.model_path) else: print("Tensorboard not available: not logging progress") return tb_writer #写入日志 def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs): if tb_writer: tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration) tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration) tb_writer.add_scalar('iter_time', elapsed, iteration) # Report test and samples of training set if iteration in testing_iterations: torch.cuda.empty_cache() validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()}, {'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]}) for config in validation_configs: if config['cameras'] and len(config['cameras']) > 0: l1_test = 0.0 psnr_test = 0.0 for idx, viewpoint in enumerate(config['cameras']): image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0) gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0) if tb_writer and (idx < 5): tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration) if iteration == testing_iterations[0]: tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration) l1_test += l1_loss(image, gt_image).mean().double() psnr_test += psnr(image, gt_image).mean().double() psnr_test /= len(config['cameras']) l1_test /= len(config['cameras']) print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test)) if tb_writer: tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration) tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration) if tb_writer: tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration) tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration) torch.cuda.empty_cache() if __name__ == "__main__": # Set up command line argument parser parser = ArgumentParser(description="Training script parameters") lp = ModelParams(parser) op = OptimizationParams(parser) pp = PipelineParams(parser) parser.add_argument('--ip', type=str, default="127.0.0.1") parser.add_argument('--port', type=int, default=6009) parser.add_argument('--debug_from', type=int, default=-1) parser.add_argument('--detect_anomaly', action='store_true', default=False) parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000]) parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000]) parser.add_argument("--quiet", action="store_true") parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[]) parser.add_argument("--start_checkpoint", type=str, default = None) args = parser.parse_args(sys.argv[1:]) args.save_iterations.append(args.iterations) print("Optimizing " + args.model_path) # Initialize system state (RNG 随机数生成器) safe_state(args.quiet) # Start GUI server, configure and run training # 在ip的port端口监听 network_gui.init(args.ip, args.port) # 正向传播时:关闭自动求导的异常侦测 torch.autograd.set_detect_anomaly(args.detect_anomaly) #开始训练,函数参数:模型参数lp,优化参数,管道参数,测试迭代值,保存迭代值,检查点迭代值,开始检查点,调试来源。 training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from) #结束 # All done print("\nTraining complete.")
class Scene: gaussians : GaussianModel #场景初始化,参数:模型参数和高斯模型 def __init__(self, args : ModelParams, gaussians : GaussianModel, load_iteration=None, shuffle=True, resolution_scales=[1.0]): """b :param path: Path to colmap scene main folder. """ self.model_path = args.model_path self.loaded_iter = None self.gaussians = gaussians # 是否加载迭代,load_iteration是迭代值 # 寻找是否有训练过的记录, 如果没有则为初次训练, 需要从COLMAP创建的点云中初始化每个点对应的3D gaussian # 以及将每张图片对应的相机参数dump到`cameras.json`文件中 if load_iteration: if load_iteration == -1: self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud")) else: self.loaded_iter = load_iteration print("Loading trained model at iteration {}".format(self.loaded_iter)) self.train_cameras = {} self.test_cameras = {} # 从COLMAP或Blender中读取每张图片, 以及每张图片对应的相机内外参 # 如果源目录中有sparse目录,则读取数据得到场景信息scene_info if os.path.exists(os.path.join(args.source_path, "sparse")): scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, args.images, args.eval) #如果有transforms_train.json文件,则调用readNerfSyntheticInfo elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")): print("Found transforms_train.json file, assuming Blender data set!") scene_info = sceneLoadTypeCallbacks["Blender"](args.source_path, args.white_background, args.eval) else: assert False, "Could not recognize scene type!" # 如果loaded_iter为空(没有设置从已经训练过的位置开始训练) # 将每张图片对应的相机参数dump到`cameras.json`文件中 if not self.loaded_iter: #拷贝ply文件到输出目录,命名为input.ply with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply") , 'wb') as dest_file: dest_file.write(src_file.read()) json_cams = [] #camlist追加scene_info的测试集和训练集 camlist = [] if scene_info.test_cameras: camlist.extend(scene_info.test_cameras) if scene_info.train_cameras: camlist.extend(scene_info.train_cameras) #把camlist的数据转成json存到cameras.json文件中 for id, cam in enumerate(camlist): json_cams.append(camera_to_JSON(id, cam)) with open(os.path.join(self.model_path, "cameras.json"), 'w') as file: json.dump(json_cams, file) # 随机打乱所有图片和对应相机的顺序,打乱train_cameras if shuffle: random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling # 把getNerfppNorm返回的结果的半径赋给cameras_extent,所有相机的中心点位置到最远camera的距离 self.cameras_extent = scene_info.nerf_normalization["radius"] #对每一个分辨率缩放,计算cameraList for resolution_scale in resolution_scales: print("Loading Training Cameras") self.train_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.train_cameras, resolution_scale, args) print("Loading Test Cameras") self.test_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.test_cameras, resolution_scale, args) # 如果是初次训练, 则从COLMAP创建的点云中初始化每个点对应的3D gaussian, 否则直接从之前保存的模型文件中读取3D gaussian if self.loaded_iter: self.gaussians.load_ply(os.path.join(self.model_path, "point_cloud", "iteration_" + str(self.loaded_iter), "point_cloud.ply")) else: self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)
class GaussianModel: def setup_functions(self): # 从尺度和旋转参数中去构建3Dgaussian的协方差矩阵,L=RS,L@L的逆等于RSStRt,再去除对称性得到6个值表示对称的协方差矩阵 def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): L = build_scaling_rotation(scaling_modifier * scaling, rotation) actual_covariance = L @ L.transpose(1, 2) symm = strip_symmetric(actual_covariance) return symm self.scaling_activation = torch.exp # 将尺度限制为非负数 self.scaling_inverse_activation = torch.log self.covariance_activation = build_covariance_from_scaling_rotation self.opacity_activation = torch.sigmoid # 将不透明度限制在0-1的范围内 self.inverse_opacity_activation = inverse_sigmoid self.rotation_activation = torch.nn.functional.normalize def __init__(self, sh_degree : int): self.active_sh_degree = 0 self.max_sh_degree = sh_degree self._xyz = torch.empty(0) # 中心点位置, 也即3Dgaussian的均值 self._features_dc = torch.empty(0) # 第一个球谐系数, 球谐系数用来表示RGB颜色 self._features_rest = torch.empty(0) # 其余球谐系数 self._scaling = torch.empty(0) # 尺度 self._rotation = torch.empty(0) # 旋转参数, 四元组 self._opacity = torch.empty(0) # 不透明度 self.max_radii2D = torch.empty(0) # 投影到2D时, 每个2D gaussian最大的半径 self.xyz_gradient_accum = torch.empty(0) # 3Dgaussian的均值的累积梯度 self.denom = torch.empty(0) self.optimizer = None self.percent_dense = 0 self.spatial_lr_scale = 0 self.setup_functions() def capture(self): return ( self.active_sh_degree, self._xyz, self._features_dc, self._features_rest, self._scaling, self._rotation, self._opacity, self.max_radii2D, self.xyz_gradient_accum, self.denom, self.optimizer.state_dict(), self.spatial_lr_scale, ) def restore(self, model_args, training_args): (self.active_sh_degree, self._xyz, self._features_dc, self._features_rest, self._scaling, self._rotation, self._opacity, self.max_radii2D, xyz_gradient_accum, denom, opt_dict, self.spatial_lr_scale) = model_args self.training_setup(training_args) self.xyz_gradient_accum = xyz_gradient_accum self.denom = denom self.optimizer.load_state_dict(opt_dict) @property def get_scaling(self): return self.scaling_activation(self._scaling) @property def get_rotation(self): return self.rotation_activation(self._rotation) @property def get_xyz(self): return self._xyz @property def get_features(self): features_dc = self._features_dc features_rest = self._features_rest return torch.cat((features_dc, features_rest), dim=1) @property def get_opacity(self): return self.opacity_activation(self._opacity) def get_covariance(self, scaling_modifier = 1): return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) def oneupSHdegree(self): if self.active_sh_degree < self.max_sh_degree: self.active_sh_degree += 1 #参数一:稀疏点云,参数二:球半径 def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): self.spatial_lr_scale = spatial_lr_scale #点云转tensor类型,送到gpu fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() #把点云的颜色转成sh系数,送到gpu fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) #特征长度为16,第一个维度为sh系数,其他赋0 features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() features[:, :3, 0 ] = fused_color features[:, 3:, 1:] = 0.0 print("Number of points at initialisation : ", fused_point_cloud.shape[0]) #调用simple_knn的distCUDA2函数,计算点云中的每个点到与其最近的K个点的平均距离的平方 dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) #距离值取对数,得到缩放值,repeat变成3个 scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") rots[:, 0] = 1 #0.1的逆sigmoid值-2.1976,也即是-2.1976的sigmoid值0.1,初始化设置为不透明度 opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) #初始化位置,sh系数(直接+剩余),缩放(3个轴),旋转(四元数),不透明度(逆sigmoid的值), self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) self._scaling = nn.Parameter(scales.requires_grad_(True)) self._rotation = nn.Parameter(rots.requires_grad_(True)) self._opacity = nn.Parameter(opacities.requires_grad_(True)) self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") # def training_setup(self, training_args): self.percent_dense = training_args.percent_dense self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") #参数列表,每一项是一个字典,包含位置、f_dc、f_rest、不透明度、缩放、旋转 l = [ {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"} ] # 创建optimizer self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) # 创建对xyz参数进行学习率调整的scheduler self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, lr_final=training_args.position_lr_final*self.spatial_lr_scale, lr_delay_mult=training_args.position_lr_delay_mult, max_steps=training_args.position_lr_max_steps)
class SceneInfo(NamedTuple): point_cloud: BasicPointCloud train_cameras: list test_cameras: list nerf_normalization: dict ply_path: str #计算这些相机的平均中心的负值和所在球半径大小 def getNerfppNorm(cam_info): #计算这些相机的平均中心,以及到平均中心的最远距离,返回平均中心和最远距离 def get_center_and_diag(cam_centers): cam_centers = np.hstack(cam_centers) avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) center = avg_cam_center dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) diagonal = np.max(dist) return center.flatten(), diagonal cam_centers = [] #计算相机在世界坐标系的位置,并放入cam_centers列表中 for cam in cam_info: W2C = getWorld2View2(cam.R, cam.T) C2W = np.linalg.inv(W2C) cam_centers.append(C2W[:3, 3:4]) center, diagonal = get_center_and_diag(cam_centers) radius = diagonal * 1.1 translate = -center return {"translate": translate, "radius": radius} #读取相机信息,参数:相机外参,内参,图片目录,输出到列表中,列表每一项是CameraInfo类 def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder): cam_infos = [] for idx, key in enumerate(cam_extrinsics): sys.stdout.write('\r') # the exact output you're looking for: sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics))) sys.stdout.flush() extr = cam_extrinsics[key] intr = cam_intrinsics[extr.camera_id] height = intr.height width = intr.width uid = intr.id R = np.transpose(qvec2rotmat(extr.qvec)) T = np.array(extr.tvec) if intr.model=="SIMPLE_PINHOLE": focal_length_x = intr.params[0] FovY = focal2fov(focal_length_x, height) FovX = focal2fov(focal_length_x, width) elif intr.model=="PINHOLE": focal_length_x = intr.params[0] focal_length_y = intr.params[1] FovY = focal2fov(focal_length_y, height) FovX = focal2fov(focal_length_x, width) else: assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" image_path = os.path.join(images_folder, os.path.basename(extr.name)) image_name = os.path.basename(image_path).split(".")[0] image = Image.open(image_path) cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=width, height=height) cam_infos.append(cam_info) sys.stdout.write('\n') return cam_infos #读取points3D.ply文件,读取位置、颜色和法线,并组合成BasicPointCloud类返回 def fetchPly(path): plydata = PlyData.read(path) vertices = plydata['vertex'] positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0 normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T return BasicPointCloud(points=positions, colors=colors, normals=normals) def storePly(path, xyz, rgb): # Define the dtype for the structured array dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] normals = np.zeros_like(xyz) elements = np.empty(xyz.shape[0], dtype=dtype) attributes = np.concatenate((xyz, normals, rgb), axis=1) elements[:] = list(map(tuple, attributes)) # Create the PlyData object and write to file vertex_element = PlyElement.describe(elements, 'vertex') ply_data = PlyData([vertex_element]) ply_data.write(path) def readColmapSceneInfo(path, images, eval, llffhold=8): try: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) except: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) reading_dir = "images" if images == None else images cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir)) cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name) #需要评估的话,训练集和测试集分一下,否则全部都拿来训练 if eval: train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] else: train_cam_infos = cam_infos test_cam_infos = [] nerf_normalization = getNerfppNorm(train_cam_infos) ply_path = os.path.join(path, "sparse/0/points3D.ply") bin_path = os.path.join(path, "sparse/0/points3D.bin") txt_path = os.path.join(path, "sparse/0/points3D.txt") if not os.path.exists(ply_path): print("Converting point3d.bin to .ply, will happen only the first time you open the scene.") try: xyz, rgb, _ = read_points3D_binary(bin_path) except: xyz, rgb, _ = read_points3D_text(txt_path) storePly(ply_path, xyz, rgb) try: #读取ply文件 pcd = fetchPly(ply_path) except: pcd = None #把这些组合成SceneInfo类返回 scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): cam_infos = [] with open(os.path.join(path, transformsfile)) as json_file: contents = json.load(json_file) fovx = contents["camera_angle_x"] frames = contents["frames"] for idx, frame in enumerate(frames): cam_name = os.path.join(path, frame["file_path"] + extension) # NeRF 'transform_matrix' is a camera-to-world transform c2w = np.array(frame["transform_matrix"]) # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) c2w[:3, 1:3] *= -1 # get the world-to-camera transform and set R, T w2c = np.linalg.inv(c2w) R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code T = w2c[:3, 3] image_path = os.path.join(path, cam_name) image_name = Path(cam_name).stem image = Image.open(image_path) im_data = np.array(image.convert("RGBA")) bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0]) norm_data = im_data / 255.0 arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4]) image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB") fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1]) FovY = fovy FovX = fovx cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1])) return cam_infos def readNerfSyntheticInfo(path, white_background, eval, extension=".png"): print("Reading Training Transforms") train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension) print("Reading Test Transforms") test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension) if not eval: train_cam_infos.extend(test_cam_infos) test_cam_infos = [] nerf_normalization = getNerfppNorm(train_cam_infos) ply_path = os.path.join(path, "points3d.ply") if not os.path.exists(ply_path): # Since this data set has no colmap data, we start with random points num_pts = 100_000 print(f"Generating random point cloud ({num_pts})...") # We create random points inside the bounds of the synthetic Blender scenes xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 shs = np.random.random((num_pts, 3)) / 255.0 pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))) storePly(ply_path, xyz, SH2RGB(shs) * 255) try: pcd = fetchPly(ply_path) except: pcd = None scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info #字典,存储对应的回调函数 sceneLoadTypeCallbacks = { "Colmap": readColmapSceneInfo, "Blender" : readNerfSyntheticInfo }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。