赞
踩
本文介绍基于redis和toke机制,自定义@RepeatSubmit注解来实现防止接口重复调用情况。
<!-- 引入aop相关 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
<!-- redis-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
spring:
redis:
database: 0
host: 127.0.0.1
port: 6379
timeout: 5000
password:
package com.blog.utils.aop; import java.lang.annotation.*; /** * @Description: 自定义注解防止表单重复提交 * @Author: LiWT * @Date: 2021/6/24 */ @Inherited @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface RepeatSubmit { int time() default 1; }
package com.blog.utils.aop; import com.blog.utils.Md5Utils; import com.blog.utils.RedisCache; import lombok.extern.slf4j.Slf4j; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; import org.aspectj.lang.reflect.MethodSignature; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import org.springframework.util.StringUtils; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.web.context.request.ServletRequestAttributes; import javax.servlet.http.HttpServletRequest; import java.util.UUID; import java.util.concurrent.TimeUnit; /** * @Description: 防止重复提交 * @Author: LiWT * @Date: 2021/6/24 */ @Component @Slf4j @Aspect public class NoRepeatSubmitAspect { private static final String JWT_TOKEN_KEY = "Authorization"; @Autowired private RedisCache redisCache; @Pointcut("@annotation(com.blog.utils.aop.RepeatSubmit)") public void serviceNoRepeat() { } @Around("serviceNoRepeat()") public Object around(ProceedingJoinPoint pjp) throws Throwable { HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest(); String jwtToken = request.getHeader(JWT_TOKEN_KEY); if (!StringUtils.hasText(jwtToken)) { jwtToken = UUID.randomUUID().toString(); } String key = Md5Utils.hash(jwtToken + "-" + request.getRequestURL().toString()); if (redisCache.getCacheObject(key) == null) { try { Object o = pjp.proceed(); MethodSignature signature = (MethodSignature) pjp.getSignature(); RepeatSubmit repeatSubmit = signature.getMethod().getAnnotation(RepeatSubmit.class); // 默认1秒内统一用户同一个地址同一个参数,视为重复提交 redisCache.setCacheObject(key, signature.getMethod().toString(), repeatSubmit.time(), TimeUnit.SECONDS); return o; } catch (Exception e) { throw new RuntimeException(e.getMessage()); } } else { throw new RuntimeException("请勿重复请求"); } } }
package com.blog.utils; import com.alibaba.fastjson.support.spring.FastJsonRedisSerializer; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.HashOperations; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.core.ValueOperations; import org.springframework.data.redis.serializer.StringRedisSerializer; import org.springframework.stereotype.Component; import java.util.Collection; import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.TimeUnit; /** * redis 工具类 * @author LiWT * @Date 2021-06-22 **/ @SuppressWarnings(value = {"unchecked", "rawtypes"}) @Component public class RedisCache { public RedisTemplate redisTemplate; @Autowired public RedisCache(RedisTemplate redisTemplate){ this.redisTemplate=redisTemplate; this.redisTemplate.setKeySerializer(new StringRedisSerializer()); this.redisTemplate.setValueSerializer(new FastJsonRedisSerializer(Object.class)); } /** * 缓存基本的对象,Integer、String、实体类等 * * @param key 缓存的键值 * @param value 缓存的值 */ public <T> void setCacheObject(final String key, final T value) { redisTemplate.opsForValue().set(key, value); } /** * 缓存基本的对象,Integer、String、实体类等 * * @param key 缓存的键值 * @param value 缓存的值 * @param timeout 时间 * @param timeUnit 时间颗粒度 */ public <T> void setCacheObject(final String key, final T value, final Integer timeout, final TimeUnit timeUnit) { redisTemplate.opsForValue().set(key, value, timeout, timeUnit); } /** * 设置有效时间 * * @param key Redis键 * @param timeout 超时时间 * @return true=设置成功;false=设置失败 */ public boolean expire(final String key, final long timeout) { return expire(key, timeout, TimeUnit.SECONDS); } /** * 设置有效时间 * * @param key Redis键 * @param timeout 超时时间 * @param unit 时间单位 * @return true=设置成功;false=设置失败 */ public boolean expire(final String key, final long timeout, final TimeUnit unit) { return redisTemplate.expire(key, timeout, unit); } /** * 获得缓存的基本对象。 * * @param key 缓存键值 * @return 缓存键值对应的数据 */ public <T> T getCacheObject(final String key) { ValueOperations<String, T> operation = redisTemplate.opsForValue(); return operation.get(key); } /** * 删除单个对象 * * @param key */ public boolean deleteObject(final String key) { return redisTemplate.delete(key); } /** * 删除集合对象 * * @param collection 多个对象 * @return */ public long deleteObject(final Collection collection) { return redisTemplate.delete(collection); } /** * 缓存List数据 * * @param key 缓存的键值 * @param %values 待缓存的List数据 * @return 缓存的对象 */ public <T> long setCacheList(final String key, final List<T> dataList) { Long count = redisTemplate.opsForList().rightPushAll(key, dataList); return count == null ? 0 : count; } /** * 获得缓存的list对象 * * @param key 缓存的键值 * @return 缓存键值对应的数据 */ public <T> List<T> getCacheList(final String key) { return redisTemplate.opsForList().range(key, 0, -1); } /** * 缓存Set * * @param key 缓存键值 * @param dataSet 缓存的数据 * @return 缓存数据的对象 */ public <T> long setCacheSet(final String key, final Set<T> dataSet) { Long count = redisTemplate.opsForSet().add(key, dataSet); return count == null ? 0 : count; } /** * 获得缓存的set * * @param key * @return */ public <T> Set<T> getCacheSet(final String key) { return redisTemplate.opsForSet().members(key); } /** * 缓存Map * * @param key * @param dataMap */ public <T> void setCacheMap(final String key, final Map<String, T> dataMap) { if (dataMap != null) { redisTemplate.opsForHash().putAll(key, dataMap); } } /** * 获得缓存的Map * * @param key * @return */ public <T> Map<String, T> getCacheMap(final String key) { return redisTemplate.opsForHash().entries(key); } /** * 往Hash中存入数据 * * @param key Redis键 * @param hKey Hash键 * @param value 值 */ public <T> void setCacheMapValue(final String key, final String hKey, final T value) { redisTemplate.opsForHash().put(key, hKey, value); } /** * 获取Hash中的数据 * * @param key Redis键 * @param hKey Hash键 * @return Hash中的对象 */ public <T> T getCacheMapValue(final String key, final String hKey) { HashOperations<String, String, T> opsForHash = redisTemplate.opsForHash(); return opsForHash.get(key, hKey); } /** * 获取多个Hash中的数据 * * @param key Redis键 * @param hKeys Hash键集合 * @return Hash对象集合 */ public <T> List<T> getMultiCacheMapValue(final String key, final Collection<Object> hKeys) { return redisTemplate.opsForHash().multiGet(key, hKeys); } /** * 获得缓存的基本对象列表 * * @param pattern 字符串前缀 * @return 对象列表 */ public Collection<String> keys(final String pattern) { return redisTemplate.keys(pattern); } /** * @param key 增长的key * @return */ public Long increment(final String key) { return redisTemplate.opsForValue().increment(key); } }
package com.blog.utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.security.MessageDigest; /** * Md5加密方法 */ public class Md5Utils { private static final Logger log = LoggerFactory.getLogger(Md5Utils.class); private static byte[] md5(String s) { MessageDigest algorithm; try { algorithm = MessageDigest.getInstance("MD5"); algorithm.reset(); algorithm.update(s.getBytes("UTF-8")); byte[] messageDigest = algorithm.digest(); return messageDigest; } catch (Exception e) { log.error("MD5 Error...", e); } return null; } private static String toHex(byte hash[]) { if (hash == null) { return null; } StringBuffer buf = new StringBuffer(hash.length * 2); int i; for (i = 0; i < hash.length; i++) { if ((hash[i] & 0xff) < 0x10) { buf.append("0"); } buf.append(Long.toString(hash[i] & 0xff, 16)); } return buf.toString(); } public static String hash(String s) { try { return new String(toHex(md5(s)).getBytes("UTF-8"), "UTF-8"); } catch (Exception e) { log.error("not supported charset...", e); return s; } } }
package com.blog.controller; import com.blog.utils.aop.RepeatSubmit; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; /** * @Author: LiWT * @Date: 2021/6/22 */ @RestController @RequestMapping("/test") public class TestController { /** * 测试重复提交 * 这里我们将time设置为3秒,也就是3秒内我们同一个请求,同一个token,同一个参数不能重复请求。 * @param param 参数 */ @GetMapping("/testRepeatSubmit") @RepeatSubmit(time = 3) public String testRepeatSubmit(String param) { System.out.println("param:" + param); return "请求成功,参数为:" + param; } }
这里我使用的是postman测试工具,首先在请求头中设置Authorization为我们的token,token我就随意填写了,然后填入我们的测试接口开始测试。
可以看出我们第一次请求是成功响应,紧接着我们再进行第二次请求,也就是我们模拟的重复提交表单
第二次提示请勿重复请求,且响应状态码为500,ok,到这里我们的防止重复提交的注解就完成了,防止重复提交在实际项目中还是比较实用的,小伙伴们快去自己项目中体验吧!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。