赞
踩
代码来源是对huggingface的修改,侵删。链接:https://github.com/huggingface/ 现在更新以后大不同了
从后面贴的源码来看,如果是测试,输入就是那三个tensor.1.input_id 2.token_type_ids 3.attention_mask. 训练的话还包括label。
三个特征的代码:参数example是文本的list:[sentence,sentence,sentence....]这里sentence用的是text_a+text_b,没有分句处理。max_seq_length是最大序列长度。tokenizer是 tokenizer = BertTokenizer.from_pretrained(WORK_DIR)得到的。WORK_DIR是放bert模型的vocab.txt的路径,用来加载tokenizer.
- def convert_lines(example, max_seq_length, tokenizer):
- max_seq_length -= 2
- all_tokens = []
- all_segments = []
- all_masks = []
- longer = 0
- for text in tqdm(example):
- tokens_a = tokenizer.tokenize(text)
- if len(tokens_a) > max_seq_length:
- tokens_a = tokens_a[:max_seq_length]
- longer += 1
- one_token = tokenizer.convert_tokens_to_ids(["[CLS]"] + tokens_a + ["[SEP]"]) + [0] * (
- max_seq_length - len(tokens_a))
- one_segment = [0] * (len(tokens_a) + 2) + [0] * (max_seq_length - len(tokens_a))
- one_mask = [1] * (len(tokens_a) + 2) + [0] * (max_seq_length - len(tokens_a))
-
- all_tokens.append(one_token)
- all_segments.append(one_segment)
- all_masks.append(one_mask)
- print(longer)
- return np.array(all_tokens), np.array(all_segments), np.array(all_masks)
这个代码是有很多条数据的情况,这个函数的输出是三个np类型的数组。all_tokens装所有句子的input_id,是一个n行,max_seq_length列的二维数组。其他两个也是。
部分main函数,
- if __name__ == '__main__':
- test = pd.read_csv("./dataset/3_abstracts.csv", encoding='utf-8')
- test['NAME'] = test['NAME'].fillna("无")
- test['CONTENT'] = test['CONTENT'].fillna("无")
- test['title_content'] = test['NAME'] + test['CONTENT']
-
- seed_everything()
- #######config
- device = torch.device('cuda')
- WORK_DIR = "./bert_pretrain/"
- #我这里分的三类
- bert_config = BertConfig.from_pretrained(WORK_DIR + 'bert_config.json', num_labels=3)
-
- tokenizer = BertTokenizer.from_pretrained(WORK_DIR)
-
- MAX_SEQUENCE_LENGTH = 512
- test_tokens, test_segments, test_masks = convert_lines(test["title_content"],MAX_SEQUENCE_LENGTH,tokenizer)
- #把得到的二维数组包装成tensor.内部为tensor([[id,id...][id..]]),用test_features包装这三个tensor
-
- test_features = [
- torch.tensor(test_tokens, dtype=torch.long),
- torch.tensor(test_segments, dtype=torch.long),
- torch.tensor(test_masks, dtype=torch.long)
-
- ]
- #pytorch的普遍用法,这个函数把参数处理成一个tensor数据集,是为了后面的loader之类的
- test_dataset = torch.utils.data.TensorDataset(*test_features)
- #调我的预测函数对标签值进行预测
- test_preds = test_model(test_dataset)
-
预测函数:
- def test_model(test_dataset):
- WORK_DIR = "./bert_pretrain/"
- # WORK_DIR = "./bert_pretrain/"
- output_model_file = WORK_DIR + '423_model.bin' #自己训练好的模型
- model = BertForSequenceClassification.from_pretrained(WORK_DIR, config=bert_config)
-
- model.load_state_dict(torch.load(output_model_file))
- model.to(device)
- model.eval()
- # for param in model.parameters():
- # param.requires_grad = False
-
- test_preds = np.zeros((len(test_dataset), 3))
- #SequentialSampler这里是把测试数据顺序排,还有RandomSampler是随机采样,随机排的
- test_sampler = SequentialSampler(test_dataset)
- #这里加载数据集,主要是设batch是4,也可以设其他,就把刚刚处理过的三兄弟,每个取四个来处理
- test_loader = DataLoader(test_dataset, sampler=test_sampler, batch_size=4)
- #总的数据量除以4
- tk0 = tqdm_notebook(test_loader)
- # x_batch1 是一个tentor数据类型:tensor([[id,id..]]),其他两个也是。侧面说明bert的model的输入需要一个二维tensor.源码里有个 num_choices = input_ids.shape[1]这个好像就是求tensor的第二维的长度,我这里设的512
- for i, (x_batch1, x_batch2, x_batch3,) in enumerate(tk0):
- #注意这里要把数据转到GPU类型,不然会报错
- pred = model(x_batch1.to(device), x_batch2.to(device), x_batch3.to(device))
- test_preds[i * 4:(i + 1) * 4] = pred[0].detach().cpu().numpy()
- return test_preds
预测的结果是一个二元组,第二元大概是什么cuda啥啥的,用第一元就行了pred[0],给它转成cpu的numpy。我这里是三分类,得到的结果中[[小数,小数,小数],[],[]...[]]。写一个for循环取三个小数里最大的的索引,就是最终需要的标签。
- predict = []
- for prediction in test_preds: # predict is one by one, so the length of probabilities=1
- pred_label = np.argmax(prediction)
- predict.append(pred_label)
下面写写如果只输入一条数据有啥要改的,用来部署接口用:
提取特征就只用得到三兄弟了每个是一个list one_token=[id,id,id] one_segment=[seg][seg][seg]...
- def convert_lines(example, max_seq_length, tokenizer):
- max_seq_length -= 2
- longer = 0
- tokens_a = tokenizer.tokenize(example)
- if len(tokens_a) > max_seq_length:
- tokens_a = tokens_a[:max_seq_length]
- longer += 1
- one_token = tokenizer.convert_tokens_to_ids(["[CLS]"] + tokens_a + ["[SEP]"])+\
- [0] * (max_seq_length - len(tokens_a))
- one_segment = [0] * (len(tokens_a) + 2) + [0] * (max_seq_length - len(tokens_a))
- one_mask = [1] * (len(tokens_a) + 2) + [0] * (max_seq_length - len(tokens_a))
- return one_token, one_segment, one_mask
因为模型需要一个二维tensor,所以这里转tensor要多加一个中括号。当然也可以unsqueeze(0)
- test_token = torch.tensor([test_token])
- test_segment = torch.tensor([test_segment])
- test_mask=torch.tensor([test_mask])
然后测试时这样再这样得到结果,这里我没写全,加载模型啥的跟上面是差不多的
- pred = model(test_token.to(device), test_segment.to(device), test_mask.to(device))
- predic = pred[0].detach().cpu().numpy()
- res = np.argmax(predic)
hugging face 的源码:(现在好像更新了封装得更好了)
- @add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """,
- BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
- class BertForSequenceClassification(BertPreTrainedModel):
- r"""
- **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
- Labels for computing the sequence classification/regression loss.
- Indices should be in ``[0, ..., config.num_labels - 1]``.
- If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
- If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
- Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
- **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
- Classification (or regression if config.num_labels==1) loss.
- **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
- Classification (or regression if config.num_labels==1) scores (before SoftMax).
- **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
- list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
- of shape ``(batch_size, sequence_length, hidden_size)``:
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- **attentions**: (`optional`, returned when ``config.output_attentions=True``)
- list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
- Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Examples:
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
- input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
- labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
- outputs = model(input_ids, labels=labels)
- loss, logits = outputs[:2]
- """
- def __init__(self, config):
- super(BertForSequenceClassification, self).__init__(config)
- self.num_labels = config.num_labels
-
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
-
- self.init_weights()
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
- position_ids=None, head_mask=None):
- outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
- attention_mask=attention_mask, head_mask=head_mask)
- pooled_output = outputs[1]
-
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
-
- outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
-
- if labels is not None:
- if self.num_labels == 1:
- # We are doing regression
- loss_fct = MSELoss()
- loss = loss_fct(logits.view(-1), labels.view(-1))
- else:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- outputs = (loss,) + outputs
-
- return outputs # (loss), logits, (hidden_states), (attentions)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。