当前位置:   article > 正文

Torch 笔记:神经网络(Neural Networks)_torchphysics

torchphysics

1. Sequential

require ‘nn’;

mlp = nn.Sequential()
mlp:add(nn.Linear(10, 25)) -- Linear module (10 inputs, 25 hidden units)
mlp:add(nn.Tanh())         -- apply hyperbolic tangent transfer function on each hidden units
mlp:add(nn.Linear(25, 1))  -- Linear module (25 inputs, 1 output)

> mlp
nn.Sequential {
  [input -> (1) -> (2) -> (3) -> output]
  (1): nn.Linear(10 -> 25)
  (2): nn.Tanh
  (3): nn.Linear(25 -> 1)
}

> print(mlp:forward(torch.randn(10)))
-0.1815
[torch.Tensor of dimension 1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

图片名称

插入网络层

model = nn.Sequential()
model:add(nn.Linear(10, 20))
model:add(nn.Linear(20, 30))
model:insert(nn.Linear(20, 20), 2)

> model
nn.Sequential {
  [input -> (1) -> (2) -> (3) -> output]
  (1): nn.Linear(10 -> 20)
  (2): nn.Linear(20 -> 20)      -- The inserted layer
  (3): nn.Linear(20 -> 30)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

删除网络层

model = nn.Sequential()
model:add(nn.Linear(10, 20))
model:add(nn.Linear(20, 20))
model:add(nn.Linear(20, 30))
model:remove(2)
> model
nn.Sequential {
  [input -> (1) -> (2) -> output]
  (1): nn.Linear(10 -> 20)
  (2): nn.Linear(20 -> 30)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

2. Parallel

module = Parallel( inputDimension, outputDimension )

mlp = nn.Parallel(2,1);   -- Parallel container will associate a module to each slice of dimension 2
                           -- (column space), and concatenate the outputs over the 1st dimension.

mlp:add(nn.Linear(10,3)); -- Linear module (input 10, output 3), applied on 1st slice of dimension 2
mlp:add(nn.Linear(10,2))  -- Linear module (input 10, output 2), applied on 2nd slice of dimension 2

                                  -- After going through the Linear module the outputs are
                                  -- concatenated along the unique dimension, to form 1D Tensor
> mlp:forward(torch.randn(10,2)) -- of size 5.
-0.5300
-1.1015
 0.7764
 0.2819
-0.6026
[torch.Tensor of dimension 5]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

图片名称

3. Concat

module = nn.Concat( dim )

mlp = nn.Concat(1);
mlp:add(nn.Linear(5,3))
mlp:add(nn.Linear(5,7))

> print(mlp:forward(torch.randn(5)))
 0.7486
 0.1349
 0.7924
-0.0371
-0.4794
 0.3044
-0.0835
-0.7928
 0.7856
-0.1815
[torch.Tensor of dimension 10]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

图片名称

4. Convolutional Neural Network

net = nn.Sequential()
net:add(nn.SpatialConvolution(1, 6, 5, 5)) -- 1 input image channel, 6 output channels, 5x5 convolution kernel
net:add(nn.ReLU())                       -- non-linearity 
net:add(nn.SpatialMaxPooling(2,2,2,2))     -- A max-pooling operation that looks at 2x2 windows and finds the max.
net:add(nn.SpatialConvolution(6, 16, 5, 5))
net:add(nn.ReLU())                       -- non-linearity 
net:add(nn.SpatialMaxPooling(2,2,2,2))
net:add(nn.View(16*5*5))                    -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 16*5*5
net:add(nn.Linear(16*5*5, 120))             -- fully connected layer (matrix multiplication between input and weights)
net:add(nn.ReLU())                       -- non-linearity 
net:add(nn.Linear(120, 84))
net:add(nn.ReLU())                       -- non-linearity 
net:add(nn.Linear(84, 10))                   -- 10 is the number of outputs of the network (in this case, 10 digits)
net:add(nn.LogSoftMax())                     -- converts the output to a log-probability. Useful for classification problems

print('Lenet5\n' .. net:__tostring());
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

5. Training

Loss Function(Criterion)

  • 对于回归或二分类问题,可采用Mean Squared Error loss(MSE) :
criterion = nn.MSECriterion()
  • 1
  • 对于多分类问题或输出层为 Log-Softmax 的网络,可采用Negative Log-likelihood :
criterion = nn.ClassNLLCriterion() 
  • 1

Stochastic Gradient Descent

trainer = nn.StochasticGradient(mlp, criterion)
trainer.learningRate = 0.001
trainer.maxIteration = 5
trainer:train(trainset)
  • 1
  • 2
  • 3
  • 4

数据集有两点要求:首先dataset[index]返回第Index个数据;其次就是dataset:size()函数返回整个数据集的example的个数。

以上为一种简单的训练方式,更多的模型优化方式可参考Optimization package

参考资料

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/240644
推荐阅读
相关标签
  

闽ICP备14008679号