当前位置:   article > 正文

Python实现文章自动生成_python 网站自动生成内容

python 网站自动生成内容

Python实现文章自动生成


  下面的Python程序实现了通过从网页抓取一篇文章,然后根据这篇文章来生成新的文章,这其中的原理就是基于概率统计的文本分析。
  过程大概就是网页抓取数据->统计分析->生成新文章。网页抓取数据是通过BeautifulSoup库来抓取网页上的文本内容。统计分析这个首先需要使用ngram模型来把文章进行分词并统计频率。因为文章生成主要依据马尔可夫模型,所以使用了2-gram,这样可以统计出一个单词出现在另一个单词后的概率。生成新文章是基于分析大量随机事件的马尔可夫模型。随机事件的特点是在一个离散事件发生之后,另一个离散事件将在前一个事件的条件下以一定的概率发生。

from urllib.request import urlopen
from random import randint
from bs4 import BeautifulSoup
import re

def wordListSum(wordList):
    sum = 0
    for word, value in wordList.items():
        sum = sum + value
    return sum


def retrieveRandomWord(wordList):

    randomIndex = randint(1, wordListSum(wordList))
    for word, value in wordList.items():
        randomIndex -= value
        if randomIndex <= 0:
            return word



def buildWordDict(text):
    text = re.sub('(\n|\r|\t)+', " ", text)
    text = re.sub('\"', "", text)

    punctuation = [',', '.', ';', ':']
    for symbol in punctuation:
        text = text.replace(symbol, " " + symbol + " ")

    words = text.split(' ')

    words = [word for word in words if word != ""]
    wordDict = {}
    for i in range(1, len(words)):
        if words[i-1] not in wordDict:
            wordDict[words[i-1]] = {}
        if words[i] not in wordDict[words[i-1]]:
            wordDict[words[i-1]][words[i]] = 0
        wordDict[words[i-1]][words[i]] = wordDict[words[i-1]][words[i]] + 1

    return wordDict

def randomFirstWord(wordDict):
    randomIndex = randint(0, len(wordDict))
    return list(wordDict.keys())[randomIndex]

html = urlopen("http://www.guancha.cn/america/2017_01_21_390488_s.shtml")
bsObj = BeautifulSoup(html, "lxml")
ps = bsObj.find("div", {"id": "cmtdiv3523349"}).find_next_siblings("p");
content = ""
for p in ps:
    content = content + p.get_text()
text = bytes(content, "UTF-8")
text = text.decode("ascii", "ignore")
wordDict = buildWordDict(text)

length = 100
chain = ""
currentWord = randomFirstWord(wordDict)
for i in range(0, length):
    chain += currentWord + " "
    currentWord = retrieveRandomWord(wordDict[currentWord])

print(chain)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65

buildWordDict(text)函数接收文本内容,生成的内容如下

{‘itself’: {‘,’: 1}, ‘night’: {‘sky’: 1}, ‘You’: {‘came’: 1, ‘will’: 1}, ‘railways’: {‘all’: 1}, ‘government’: {‘while’: 1, ‘,’: 1, ‘is’: 1}, ‘you’: {‘now’: 1, ‘open’: 1, ‘down’: 1, ‘with’: 1, ‘.’: 6, ‘,’: 1, ‘that’: 1},

主要就是生成一个字典,键是文章中所有出现的词语,值其实也是一个字典,这个字典是所有直接出现在键后边的词语及其出现的频率。这个函数就是ngram模型思想的运用。
retrieveRandomWord(wordList)函数的wordList代表的是出现在上一个词语后的词语列表及其频率组成的字典,然后根据统计的概率随机生成一个词。这个函数是马尔可夫模型的思想运用。

然后运行这个程序会生成一个长度为100的文章,如下面所示

fail . We will stir ourselves , but we will never before . Do not share one heart and pleasant it back our jobs . We are infused with the orderly and railways all of the gangs and robbed our jobs for their success will determine the civilized world . We will their success will be a great men and highways and millions to all bleed the world . It belongs to great national effort to defend our products , constantly complaining , D . We will be ignored again . It belongs to harness the expense of America .

生成的文章看起来语法混乱,这也难怪,因为只是抓取分析统计了一篇的文章。我想如果可以抓取足够多的英文文章,数据集足够大那么语法准确度会大大提高。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/281786
推荐阅读
相关标签
  

闽ICP备14008679号