赞
踩
机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
1.海量的数据
2.获取有用的信息
机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。 “机器学习是对能通过经验自动改进的计算机算法的研究”。 “机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。” 一种经常引用的英文定义是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。
我们生活中已经有一些常见的应用了,比如:人脸识别技术,第一位机器人公民——索菲亚,无人驾驶公交车,智能客服,无人银行等。
例如:识别动物猫
1) 模式识别(官方标准):人们通过大量的经验,得到结论,从而判断它就是猫。
2) 机器学习(数据学习):人们通过阅读进行学习,观察它会叫、小眼睛、两只耳朵、四条腿、一条尾巴,得到结论,从而判断它就是猫。
3) 深度学习(深入数据):人们通过深入了解它,发现它会’喵喵’的叫、与同类的猫科动物很类似,得到结论,从而判断它就是猫。(深度学习常用领域:语音识别、图像识别)
模式识别(pattern recognition): 模式识别是最古老的(作为一个术语而言,可以说是很过时的)。我们把环境与客体统称为“模式”,识别是对模式的一种认知,是如何让一个计算机程序去做一些看起来很“智能”的事情。通过融于智慧和直觉后,通过构建程序,识别一些事物,而不是人,例如: 识别数字。
机器学习(machine learning): 机器学习是最基础的(当下初创公司和研究实验室的热点领域之一)。
在90年代初,人们开始意识到一种可以更有效地构建模式识别算法的方法,那就是用数据(可以通过廉价劳动力采集获得)去替换专家(具有很多图像方面知识的人)。“机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身性能的学科。
4. 深度学习(deep learning): 深度学习是非常崭新和有影响力的前沿领域,我们甚至不会去思考-后深度学习时代。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
机器学习已应用于多个领域,远远超出大多数人的想象,横跨:计算机科学、工程技术和统计学等多个学科。
搜索引擎: 根据你的搜索点击,优化你下次的搜索结果,是机器学习来帮助搜索引擎判断哪个结果更适合你(也判断哪个广告更适合你)。
垃圾邮件: 会自动的过滤垃圾广告邮件到垃圾箱内。
超市优惠券: 你会发现,你在购买小孩子尿布的时候,售货员会赠送你一张优惠券可以兑换6罐啤酒。
邮局邮寄: 手写软件自动识别寄送贺卡的地址。
申请贷款: 通过你最近的金融活动信息进行综合评定,决定你是否合格。
必须确定目标变量的值,以便机器学习算法可以发现特征和目标变量之间的关系。在监督学习中,给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系。
(包括:分类和回归)
样本集:训练数据 + 测试数据
训练样本 = 特征(feature) + 目标变量(label: 分类-离散值/回归-连续值)
特征通常是训练样本集的列,它们是独立测量得到的。
目标变量: 目标变量是机器学习预测算法的测试结果。在分类算法中目标变量的类型通常是标称型(如:真与假),而在回归算法中通常是连续型(如:1~100)。
监督学习需要注意的问题:
知识表示:
* 可以采用规则集的形式【例如:数学成绩大于90分为优秀】
* 可以采用概率分布的形式【例如:通过统计分布发现,90%的同学数学成绩,在70分以下,那么大于70分定为优秀】
* 可以使用训练样本集中的一个实例【例如:通过样本集合,我们训练出一个模型实例,得出 年轻,数学成绩中高等,谈吐优雅,我们认为是优秀】
这个算法可以训练程序做出某一决定。程序在某一情况下尝试所有的可能行动,记录不同行动的结果并试着找出最好的一次尝试来做决定。 属于这一类算法的有马尔可夫决策过程。
选择算法需要考虑的两个问题
算法场景
需要收集或分析的数据是什么
举例
机器学习 开发流程
Python语言
数学工具
通俗来说,欠拟合和过拟合都可以用一句话来说,欠拟合就是:“你太天真了!”,过拟合就是:“你想太多了!”。
举个例子如下:
举个例子如下: 某池塘有 1400 条鲤鱼,300 只虾,300 只乌龟。现在以捕鲤鱼为目的。撒了一张网,逮住了 700 条鲤鱼,200 只 虾, 100 只乌龟。那么这些指标分别如下:
正确率 = 700 / (700 + 200 + 100) = 70%
召回率 = 700 / 1400 = 50%
F 值 = 70% * 50% * 2 / (70% + 50%) = 58.3%
训练集:用来训练模型;
验证集:用来选择超参数;
测试集:评估模型的泛化能力;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。