赞
踩
聚焦光束的理论实现
聚焦光束的实现主要是由于基于Debye理论得到,聚焦光束由于其特殊的物理性质在现在科学中有着不可替代的作用,我们现在所熟知的光镊技术,其基础就在于适用聚焦光束对微纳粒子进行捕获操作,其光束的聚焦基本图示如下:
假设现在输入的光束的是一个径向极化的光束,此时在进行紧聚焦之后,根据Debye理论可以得到聚焦之后的电场表达式为
E ( r ) = − i k f 2 π ∫ 0 θ m a x ∫ 0 2 π A ( θ , ϕ ) exp ( i k ⋅ r ) sin θ d ϕ d θ \boldsymbol{E}\left( \boldsymbol{r} \right) =-\frac{ikf}{2\pi}\int\limits_0^{\theta _{max}}{\int\limits_0^{2\pi}{\boldsymbol{A}\left( \theta ,\phi \right) \exp \left( i\boldsymbol{k}\cdot \boldsymbol{r} \right) \sin \theta d\phi d\theta}} E(r)=−2πikf0∫θmax0∫2πA(θ,ϕ)exp(ik⋅r)sinθdϕdθ
同样的,对于磁场的表达式,只需要根据麦克斯韦方程中的磁场和电场之间的关系就可以得到,这里我就不在列出(不要问我为什么还有磁场,因为光波是电磁场,包括电场和磁场分量)。
当我们完成上式的计算之后,我们就可以对公式进行仿真计算,这里我采用的是径向极化的高斯光束作为入射光束,当然还存在圆极化,线极化,方位角极化等情况,不同极化方式的光束只是在光束的表达式上存在差异,但是具体的推导过程都是一样的,所以不需要进行过多的考虑。
function [E_rho,E_phi,E_z]=opticalfield(m,phi,r,z) lambda0=1.064e-6; %入射光波波长 n_i=1.518; %折射率 NA=1.32; % power=0.1; % 入射光线的功率 f=1.2e-3; % 透镜的聚焦焦距 k0=2*pi/lambda0; %波数 k=k0*n_i; A=k*f/2; theta_min=0; theta_max=asin(NA/n_i); beta0=1.5; E_rho1=zeros(size(phi,1),size(phi,2)); %预分配内存 E_phi1=zeros(size(phi,1),size(phi,2)); E_z1=zeros(size(phi,1),size(phi,2)); theta1=34.66*pi/180; theta2=43.88*pi/180; theta3=51.94*pi/180; theta4=57.89*pi/180; %角度系数 % theta1=0; % theta2=0; % theta3=0; % theta4=0; %角度系数 theta_num=100; dtheta=(theta_max-theta_min)/theta_num; theta=theta_min:dtheta:theta_max; for i=1:length(theta) thetai=ones(size(phi))*theta(i); if (theta(i)>theta1&&theta(i)<=theta2)||(theta(i)>theta3&&theta(i)<=theta4) E_rho1(:,:,i)=-A.*1i^(m).*exp(1i*m*phi).*power.*sqrt(cos(thetai)).*sin(2*thetai).*exp(-beta0^2*(sin(thetai)).^2./(sin(theta_max))^2).*besselj(m,2*beta0*sin(thetai)/... sin(theta_max)).*exp(1i*k*z.*cos(thetai)).*(besselj(m+1,k*r.*sin(thetai))-besselj(m-1,k*r.*sin(thetai))); E_phi1(:,:,i)=A.*1i^(m+1).*exp(1i*m*phi).*power.*sqrt(cos(thetai)).*sin(thetai).*exp(-beta0^2*(sin(thetai)).^2./(sin(theta_max))^2).*besselj(m,2*beta0*sin(thetai)/... sin(theta_max)).*exp(1i*k*z.*cos(thetai)).*(besselj(m+1,k*r.*sin(thetai))+besselj(m-1,k*r.*sin(thetai))); E_z1(:,:,i)=-2*A.*1i^(m+1).*exp(1i*m*phi).*power.*sqrt(cos(thetai)).*(sin(thetai)).^2.*exp(-beta0^2*(sin(thetai)).^2./(sin(theta_max))^2).*besselj(m,2*beta0*sin(thetai)/... sin(theta_max)).*exp(1i*k*z.*cos(thetai)).*besselj(m,k*r.*sin(thetai)); else E_rho1(:,:,i)=A.*1i^(m).*exp(1i*m*phi).*power.*sqrt(cos(thetai)).*sin(2*thetai).*exp(-beta0^2*(sin(thetai)).^2./(sin(theta_max))^2).*besselj(m,2*beta0*sin(thetai)/... sin(theta_max)).*exp(1i*k*z.*cos(thetai)).*(besselj(m+1,k*r.*sin(thetai))-besselj(m-1,k*r.*sin(thetai))); E_phi1(:,:,i)=-A.*1i^(m+1).*exp(1i*m*phi).*power.*sqrt(cos(thetai)).*sin(thetai).*exp(-beta0^2*(sin(thetai)).^2./(sin(theta_max))^2).*besselj(m,2*beta0*sin(thetai)/... sin(theta_max)).*exp(1i*k*z.*cos(thetai)).*(besselj(m+1,k*r.*sin(thetai))+besselj(m-1,k*r.*sin(thetai))); E_z1(:,:,i)=2*A.*1i^(m+1).*exp(1i*m*phi).*power.*sqrt(cos(thetai)).*(sin(thetai)).^2.*exp(-beta0^2*(sin(thetai)).^2./(sin(theta_max))^2).*besselj(m,2*beta0*sin(thetai)/... sin(theta_max)).*exp(1i*k*z.*cos(thetai)).*besselj(m,k*r.*sin(thetai)); end end content1=floor(theta1/dtheta); content2=floor(theta2/dtheta); content3=floor(theta3/dtheta); content4=floor(theta4/dtheta); E_rho=sum(E_rho1(:,:,[1:1:content1])*dtheta,3)+sum(E_rho1(:,:,[1:1:content2])*dtheta,3)+... sum(E_rho1(:,:,[1:1:content3])*dtheta,3)+sum(E_rho1(:,:,[1:1:content4])*dtheta,3)+sum(E_rho1*dtheta,3); E_phi=sum(E_phi1(:,:,[1:1:content1])*dtheta,3)+sum(E_phi1(:,:,[1:1:content2])*dtheta,3)+... sum(E_phi1(:,:,[1:1:content3])*dtheta,3)+sum(E_phi1(:,:,[1:1:content4])*dtheta,3)+sum(E_phi1*dtheta,3); E_z=sum(E_z1(:,:,[1:1:content1])*dtheta,3)+sum(E_z1(:,:,[1:1:content2])*dtheta,3)+... sum(E_z1(:,:,[1:1:content3])*dtheta,3)+sum(E_z1(:,:,[1:1:content4])*dtheta,3)+sum(E_z1*dtheta,3);%计算各个方向的光场 end
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。