赞
踩
在运行14讲第二版的第8讲的程序时,出现了以下错误:
原因是 parallel_for_函数出现错误,这是因为opencv3不支持std::bind函数,作者写书的时候忘提这件事了,后来在勘误里加上了,可以自己安装opencv 4,或者自行改写下parallel_for_函数。(高翔回答https://github.com/gaoxiang12/slambook2/issues/57)
有两种解决方法:
1.安装opencv4
2.修改optical_flow.cpp与direct_method.cpp程序(本人采用第二种方法)
继续深入查询发现已经有人分享能使用opencv3运行的direct_method.cpp(https://github.com/gaoxiang12/slambook2/issues/32),但没有找到修改好的optical_flow.cpp。本人对optical_flow.cpp进行修改,下面分享修改好的两个文件:
direct_method.cpp(转自https://github.com/rancheng/slambook2/blob/opencv3_2_0/ch8/direct_method.cpp):
- #include <opencv2/opencv.hpp>
- #include <sophus/se3.hpp>
- #include <boost/format.hpp>
- #include <pangolin/pangolin.h>
-
- using namespace std;
-
- typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
-
- // Camera intrinsics
- double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
- // baseline
- double baseline = 0.573;
- // paths
- string left_file = "./left.png";
- string disparity_file = "./disparity.png";
- boost::format fmt_others("./%06d.png"); // other files
-
- // useful typedefs
- typedef Eigen::Matrix<double, 6, 6> Matrix6d;
- typedef Eigen::Matrix<double, 2, 6> Matrix26d;
- typedef Eigen::Matrix<double, 6, 1> Vector6d;
-
- /**
- * pose estimation using direct method
- * @param img1
- * @param img2
- * @param px_ref
- * @param depth_ref
- * @param T21
- */
- void DirectPoseEstimationMultiLayer(
- const cv::Mat &img1,
- const cv::Mat &img2,
- const VecVector2d &px_ref,
- const vector<double> depth_ref,
- Sophus::SE3d &T21
- );
-
- /**
- * pose estimation using direct method
- * @param img1
- * @param img2
- * @param px_ref
- * @param depth_ref
- * @param T21
- */
- void DirectPoseEstimationSingleLayer(
- const cv::Mat &img1,
- const cv::Mat &img2,
- const VecVector2d &px_ref,
- const vector<double> depth_ref,
- Sophus::SE3d &T21
- );
-
- // bilinear interpolation
- inline float GetPixelValue(const cv::Mat &img, float x, float y) {
- // boundary check
- if (x < 0) x = 0;
- if (y < 0) y = 0;
- if (x >= img.cols) x = img.cols - 1;
- if (y >= img.rows) y = img.rows - 1;
- uchar *data = &img.data[int(y) * img.step + int(x)];
- float xx = x - floor(x);
- float yy = y - floor(y);
- return float(
- (1 - xx) * (1 - yy) * data[0] +
- xx * (1 - yy) * data[1] +
- (1 - xx) * yy * data[img.step] +
- xx * yy * data[img.step + 1]
- );
- }
-
- /// class for accumulator jacobians in parallel
- class JacobianAccumulator: public cv::ParallelLoopBody {
- private:
- const cv::Mat &img1;
- const cv::Mat &img2;
- const VecVector2d &px_ref;
- const vector<double> depth_ref;
- Sophus::SE3d &T21;
- mutable VecVector2d projection; // projected points
-
- mutable std::mutex hessian_mutex;
- mutable Matrix6d H = Matrix6d::Zero();
- mutable Vector6d b = Vector6d::Zero();
- mutable double cost = 0;
-
- public:
- JacobianAccumulator(
- const cv::Mat &img1_,
- const cv::Mat &img2_,
- const VecVector2d &px_ref_,
- const vector<double> depth_ref_,
- Sophus::SE3d &T21_) :
- img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
- projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
- }
-
- /// accumulate jacobians in a range
- // void accumulate_jacobian(const cv::Range &range);
-
-
- /// get hessian matrix
- Matrix6d hessian() const { return H; }
-
- /// get bias
- Vector6d bias() const { return b; }
-
- /// get total cost
- double cost_func() const { return cost; }
-
- /// get projected points
- VecVector2d projected_points() const { return projection; }
-
- /// reset h, b, cost to zero
- void reset() {
- H = Matrix6d::Zero();
- b = Vector6d::Zero();
- cost = 0;
- }
-
- virtual void operator()(const cv::Range& range) const {
-
- // parameters
- const int half_patch_size = 1;
- int cnt_good = 0;
- Matrix6d hessian = Matrix6d::Zero();
- Vector6d bias = Vector6d::Zero();
- double cost_tmp = 0;
-
- for (size_t i = range.start; i < range.end; i++) {
-
- // compute the projection in the second image
- Eigen::Vector3d point_ref =
- depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
- Eigen::Vector3d point_cur = T21 * point_ref;
- if (point_cur[2] < 0) // depth invalid
- continue;
-
- float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;
- if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
- v > img2.rows - half_patch_size)
- continue;
-
- projection[i] = Eigen::Vector2d(u, v);
- double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
- Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;
- cnt_good++;
-
- // and compute error and jacobian
- for (int x = -half_patch_size; x <= half_patch_size; x++)
- for (int y = -half_patch_size; y <= half_patch_size; y++) {
-
- double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
- GetPixelValue(img2, u + x, v + y);
- Matrix26d J_pixel_xi;
- Eigen::Vector2d J_img_pixel;
-
- J_pixel_xi(0, 0) = fx * Z_inv;
- J_pixel_xi(0, 1) = 0;
- J_pixel_xi(0, 2) = -fx * X * Z2_inv;
- J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
- J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
- J_pixel_xi(0, 5) = -fx * Y * Z_inv;
-
- J_pixel_xi(1, 0) = 0;
- J_pixel_xi(1, 1) = fy * Z_inv;
- J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
- J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
- J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
- J_pixel_xi(1, 5) = fy * X * Z_inv;
-
- J_img_pixel = Eigen::Vector2d(
- 0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
- 0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
- );
-
- // total jacobian
- Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();
-
- hessian += J * J.transpose();
- bias += -error * J;
- cost_tmp += error * error;
- }
- }
-
- if (cnt_good) {
- // set hessian, bias and cost
- unique_lock<mutex> lck(hessian_mutex);
- H += hessian;
- b += bias;
- cost += cost_tmp / cnt_good;
- }
- }
-
-
- };
-
-
-
- int main(int argc, char **argv) {
-
- cv::Mat left_img = cv::imread(left_file, 0);
- cv::Mat disparity_img = cv::imread(disparity_file, 0);
- if (left_img.empty() || disparity_img.empty())
- {
- std::cout << "!!! Failed imread(): image not found" << std::endl;
- return 1;
- }
- // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame
- cv::RNG rng;
- int nPoints = 2000;
- int boarder = 20;
- VecVector2d pixels_ref;
- vector<double> depth_ref;
- cout << "left_img.cols" << left_img.cols << endl;
- cout << "left_img: " << left_img << endl;
- // generate pixels in ref and load depth data
- for (int i = 0; i < nPoints; i++) {
- int x = rng.uniform(boarder, left_img.cols - boarder); // don't pick pixels close to boarder
- int y = rng.uniform(boarder, left_img.rows - boarder); // don't pick pixels close to boarder
- int disparity = disparity_img.at<uchar>(y, x);
- double depth = fx * baseline / disparity; // you know this is disparity to depth
- depth_ref.push_back(depth);
- pixels_ref.push_back(Eigen::Vector2d(x, y));
- }
-
- // estimates 01~05.png's pose using this information
- Sophus::SE3d T_cur_ref;
-
- for (int i = 1; i < 6; i++) { // 1~10
- cv::Mat img = cv::imread((fmt_others % i).str(), 0);
- // try single layer by uncomment this line
- // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
- DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
- }
- return 0;
- }
-
- void DirectPoseEstimationSingleLayer(
- const cv::Mat &img1,
- const cv::Mat &img2,
- const VecVector2d &px_ref,
- const vector<double> depth_ref,
- Sophus::SE3d &T21) {
-
- const int iterations = 10;
- double cost = 0, lastCost = 0;
- auto t1 = chrono::steady_clock::now();
- JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);
-
- for (int iter = 0; iter < iterations; iter++) {
- jaco_accu.reset();
- cv::parallel_for_(cv::Range(0, px_ref.size()), jaco_accu);
- Matrix6d H = jaco_accu.hessian();
- Vector6d b = jaco_accu.bias();
-
- // solve update and put it into estimation
- Vector6d update = H.ldlt().solve(b);;
- T21 = Sophus::SE3d::exp(update) * T21;
- cost = jaco_accu.cost_func();
-
- if (std::isnan(update[0])) {
- // sometimes occurred when we have a black or white patch and H is irreversible
- cout << "update is nan" << endl;
- break;
- }
- if (iter > 0 && cost > lastCost) {
- cout << "cost increased: " << cost << ", " << lastCost << endl;
- break;
- }
- if (update.norm() < 1e-3) {
- // converge
- break;
- }
-
- lastCost = cost;
- cout << "iteration: " << iter << ", cost: " << cost << endl;
- }
-
- cout << "T21 = \n" << T21.matrix() << endl;
- auto t2 = chrono::steady_clock::now();
- auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
- cout << "direct method for single layer: " << time_used.count() << endl;
-
- // plot the projected pixels here
- cv::Mat img2_show;
- cv::cvtColor(img2, img2_show, CV_GRAY2BGR);
- VecVector2d projection = jaco_accu.projected_points();
- for (size_t i = 0; i < px_ref.size(); ++i) {
- auto p_ref = px_ref[i];
- auto p_cur = projection[i];
- if (p_cur[0] > 0 && p_cur[1] > 0) {
- cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
- cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
- cv::Scalar(0, 250, 0));
- }
- }
- cv::imshow("current", img2_show);
- cv::waitKey();
- }
-
-
- void DirectPoseEstimationMultiLayer(
- const cv::Mat &img1,
- const cv::Mat &img2,
- const VecVector2d &px_ref,
- const vector<double> depth_ref,
- Sophus::SE3d &T21) {
-
- // parameters
- int pyramids = 4;
- double pyramid_scale = 0.5;
- double scales[] = {1.0, 0.5, 0.25, 0.125};
-
- // create pyramids
- vector<cv::Mat> pyr1, pyr2; // image pyramids
- for (int i = 0; i < pyramids; i++) {
- if (i == 0) {
- pyr1.push_back(img1);
- pyr2.push_back(img2);
- } else {
- cv::Mat img1_pyr, img2_pyr;
- cv::resize(pyr1[i - 1], img1_pyr,
- cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
- cv::resize(pyr2[i - 1], img2_pyr,
- cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
- pyr1.push_back(img1_pyr);
- pyr2.push_back(img2_pyr);
- }
- }
-
- double fxG = fx, fyG = fy, cxG = cx, cyG = cy; // backup the old values
- for (int level = pyramids - 1; level >= 0; level--) {
- VecVector2d px_ref_pyr; // set the keypoints in this pyramid level
- for (auto &px: px_ref) {
- px_ref_pyr.push_back(scales[level] * px);
- }
-
- // scale fx, fy, cx, cy in different pyramid levels
- fx = fxG * scales[level];
- fy = fyG * scales[level];
- cx = cxG * scales[level];
- cy = cyG * scales[level];
- DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
- }
-
- }
optical_flow.cpp(修改后)
-
- #include <opencv2/opencv.hpp>
- #include <string>
- #include <chrono>
- #include <Eigen/Core>
- #include <Eigen/Dense>
-
- using namespace std;
- using namespace cv;
-
- string file_1 = "./LK1.png"; // first image
- string file_2 = "./LK2.png"; // second image
-
- /**
- * single level optical flow
- * @param [in] img1 the first image
- * @param [in] img2 the second image
- * @param [in] kp1 keypoints in img1
- * @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1
- * @param [out] success true if a keypoint is tracked successfully
- * @param [in] inverse use inverse formulation?
- */
- void OpticalFlowSingleLevel(
- const Mat &img1,
- const Mat &img2,
- const vector<KeyPoint> &kp1,
- vector<KeyPoint> &kp2,
- vector<bool> &success,
- bool inverse = false,
- bool has_initial_guess = false
- );
-
- /**
- * multi level optical flow, scale of pyramid is set to 2 by default
- * the image pyramid will be create inside the function
- * @param [in] img1 the first pyramid
- * @param [in] img2 the second pyramid
- * @param [in] kp1 keypoints in img1
- * @param [out] kp2 keypoints in img2
- * @param [out] success true if a keypoint is tracked successfully
- * @param [in] inverse set true to enable inverse formulation
- */
- void OpticalFlowMultiLevel(
- const Mat &img1,
- const Mat &img2,
- const vector<KeyPoint> &kp1,
- vector<KeyPoint> &kp2,
- vector<bool> &success,
- bool inverse = false
- );
-
- /**
- * get a gray scale value from reference image (bi-linear interpolated)
- * @param img
- * @param x
- * @param y
- * @return the interpolated value of this pixel
- */
- inline float GetPixelValue(const cv::Mat &img, float x, float y) {
- // boundary check
- if (x < 0) x = 0;
- if (y < 0) y = 0;
- if (x >= img.cols) x = img.cols - 1;
- if (y >= img.rows) y = img.rows - 1;
- uchar *data = &img.data[int(y) * img.step + int(x)];
- float xx = x - floor(x);
- float yy = y - floor(y);
- return float(
- (1 - xx) * (1 - yy) * data[0] +
- xx * (1 - yy) * data[1] +
- (1 - xx) * yy * data[img.step] +
- xx * yy * data[img.step + 1]
- );
- }
-
- /// Optical flow tracker and interface
- class OpticalFlowTracker: public cv::ParallelLoopBody {
- private:
- const Mat &img1;
- const Mat &img2;
- const vector<KeyPoint> &kp1;
- vector<KeyPoint> &kp2;
- vector<bool> &success;
- bool inverse = true;
- bool has_initial = false;
-
- public:
- OpticalFlowTracker(
- const Mat &img1_,
- const Mat &img2_,
- const vector<KeyPoint> &kp1_,
- vector<KeyPoint> &kp2_,
- vector<bool> &success_,
- bool inverse_ = true, bool has_initial_ = false) :
- img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),
- has_initial(has_initial_) {}
-
- // void calculateOpticalFlow(const Range &range);
-
- virtual void operator()(const Range &range) const {
- // parameters
- int half_patch_size = 4;
- int iterations = 10;
- for (size_t i = range.start; i < range.end; i++) {
- auto kp = kp1[i];
- double dx = 0, dy = 0; // dx,dy need to be estimated
- if (has_initial) {
- dx = kp2[i].pt.x - kp.pt.x;
- dy = kp2[i].pt.y - kp.pt.y;
- }
-
- double cost = 0, lastCost = 0;
- bool succ = true; // indicate if this point succeeded
-
- // Gauss-Newton iterations
- Eigen::Matrix2d H = Eigen::Matrix2d::Zero(); // hessian
- Eigen::Vector2d b = Eigen::Vector2d::Zero(); // bias
- Eigen::Vector2d J; // jacobian
- for (int iter = 0; iter < iterations; iter++) {
- if (inverse == false) {
- H = Eigen::Matrix2d::Zero();
- b = Eigen::Vector2d::Zero();
- } else {
- // only reset b
- b = Eigen::Vector2d::Zero();
- }
-
- cost = 0;
-
- // compute cost and jacobian
- for (int x = -half_patch_size; x < half_patch_size; x++)
- for (int y = -half_patch_size; y < half_patch_size; y++) {
- double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
- GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);; // Jacobian
- if (inverse == false) {
- J = -1.0 * Eigen::Vector2d(
- 0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
- GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
- 0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
- GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
- );
- } else if (iter == 0) {
- // in inverse mode, J keeps same for all iterations
- // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
- J = -1.0 * Eigen::Vector2d(
- 0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
- GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
- 0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
- GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
- );
- }
- // compute H, b and set cost;
- b += -error * J;
- cost += error * error;
- if (inverse == false || iter == 0) {
- // also update H
- H += J * J.transpose();
- }
- }
-
- // compute update
- Eigen::Vector2d update = H.ldlt().solve(b);
-
- if (std::isnan(update[0])) {
- // sometimes occurred when we have a black or white patch and H is irreversible
- cout << "update is nan" << endl;
- succ = false;
- break;
- }
-
- if (iter > 0 && cost > lastCost) {
- break;
- }
-
- // update dx, dy
- dx += update[0];
- dy += update[1];
- lastCost = cost;
- succ = true;
-
- if (update.norm() < 1e-2) {
- // converge
- break;
- }
- }
-
- success[i] = succ;
-
- // set kp2
- kp2[i].pt = kp.pt + Point2f(dx, dy);
- }
- }
- };
-
-
- int main(int argc, char **argv) {
-
- // images, note they are CV_8UC1, not CV_8UC3
- Mat img1 = imread(file_1, 0);
- Mat img2 = imread(file_2, 0);
-
- // key points, using GFTT here.
- vector<KeyPoint> kp1;
- Ptr<GFTTDetector> detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypoints
- detector->detect(img1, kp1);
-
- // now lets track these key points in the second image
- // first use single level LK in the validation picture
- vector<KeyPoint> kp2_single;
- vector<bool> success_single;
- OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single);
-
- // then test multi-level LK
- vector<KeyPoint> kp2_multi;
- vector<bool> success_multi;
- chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
- OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true);
- chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
- auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
- cout << "optical flow by gauss-newton: " << time_used.count() << endl;
-
- // use opencv's flow for validation
- vector<Point2f> pt1, pt2;
- for (auto &kp: kp1) pt1.push_back(kp.pt);
- vector<uchar> status;
- vector<float> error;
- t1 = chrono::steady_clock::now();
- cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);
- t2 = chrono::steady_clock::now();
- time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
- cout << "optical flow by opencv: " << time_used.count() << endl;
-
- // plot the differences of those functions
- Mat img2_single;
- cv::cvtColor(img2, img2_single, CV_GRAY2BGR);
- for (int i = 0; i < kp2_single.size(); i++) {
- if (success_single[i]) {
- cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);
- cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));
- }
- }
-
- Mat img2_multi;
- cv::cvtColor(img2, img2_multi, CV_GRAY2BGR);
- for (int i = 0; i < kp2_multi.size(); i++) {
- if (success_multi[i]) {
- cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2);
- cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0));
- }
- }
-
- Mat img2_CV;
- cv::cvtColor(img2, img2_CV, CV_GRAY2BGR);
- for (int i = 0; i < pt2.size(); i++) {
- if (status[i]) {
- cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2);
- cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0));
- }
- }
-
- cv::imshow("tracked single level", img2_single);
- cv::imshow("tracked multi level", img2_multi);
- cv::imshow("tracked by opencv", img2_CV);
- cv::waitKey(0);
-
- return 0;
- }
-
- void OpticalFlowSingleLevel(
- const Mat &img1,
- const Mat &img2,
- const vector<KeyPoint> &kp1,
- vector<KeyPoint> &kp2,
- vector<bool> &success,
- bool inverse, bool has_initial) {
- kp2.resize(kp1.size());
- success.resize(kp1.size());
- OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial);
- parallel_for_(Range(0, kp1.size()), tracker);
- }
-
-
-
- void OpticalFlowMultiLevel(
- const Mat &img1,
- const Mat &img2,
- const vector<KeyPoint> &kp1,
- vector<KeyPoint> &kp2,
- vector<bool> &success,
- bool inverse) {
-
- // parameters
- int pyramids = 4;
- double pyramid_scale = 0.5;
- double scales[] = {1.0, 0.5, 0.25, 0.125};
-
- // create pyramids
- chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
- vector<Mat> pyr1, pyr2; // image pyramids
- for (int i = 0; i < pyramids; i++) {
- if (i == 0) {
- pyr1.push_back(img1);
- pyr2.push_back(img2);
- } else {
- Mat img1_pyr, img2_pyr;
- cv::resize(pyr1[i - 1], img1_pyr,
- cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
- cv::resize(pyr2[i - 1], img2_pyr,
- cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
- pyr1.push_back(img1_pyr);
- pyr2.push_back(img2_pyr);
- }
- }
- chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
- auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
- cout << "build pyramid time: " << time_used.count() << endl;
-
- // coarse-to-fine LK tracking in pyramids
- vector<KeyPoint> kp1_pyr, kp2_pyr;
- for (auto &kp:kp1) {
- auto kp_top = kp;
- kp_top.pt *= scales[pyramids - 1];
- kp1_pyr.push_back(kp_top);
- kp2_pyr.push_back(kp_top);
- }
-
- for (int level = pyramids - 1; level >= 0; level--) {
- // from coarse to fine
- success.clear();
- t1 = chrono::steady_clock::now();
- OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);
- t2 = chrono::steady_clock::now();
- auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
- cout << "track pyr " << level << " cost time: " << time_used.count() << endl;
-
- if (level > 0) {
- for (auto &kp: kp1_pyr)
- kp.pt /= pyramid_scale;
- for (auto &kp: kp2_pyr)
- kp.pt /= pyramid_scale;
- }
- }
-
- for (auto &kp: kp2_pyr)
- kp2.push_back(kp);
- }
将两个文件修改后可以在不安装opencv4的情况下编译通过。
编译:
运行:optical_flow
./build/optical_flow
运行:direct_method
./build/direct_method
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。