当前位置:   article > 正文

python学习日志(九)_print('run task %s (%s)...' % (file_name, os.getpi

print('run task %s (%s)...' % (file_name, os.getpid()))

进程和线程-网络编程

一、介绍
(1)单核cpu怎么执行多任务
答案就是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。
真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。
(2)多进程与多线程任务

对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写检查、打印等事情。在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。

由此,一个进程里可以开辟多个线程处理多个任务(cpu处理的单元)同时进行,所以一个进程里至少有一个线程。

多任务的模型:

总结一下就是,多任务的实现有3种方式:

  • 多进程模式;
  • 多线程模式;
  • 多进程+多线程模式。
二、多进程

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

  1. import os
  2. print('Process (%s) start...' % os.getpid())
  3. # Only works on Unix/Linux/Mac:
  4. pid = os.fork()
  5. if pid == 0:
  6. print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
  7. else:
  8. print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
Windows上没有fork函数,因此以上只能在Linux、Unix上实现,mac也是基于Unix内核的。
(1) multiprocessing

由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。

multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

  1. from multiprocessing import Process
  2. import os
  3. # 子进程要执行的代码
  4. def run_proc(name):
  5. print('Run child process %s (%s)...' % (name, os.getpid()))
  6. if __name__=='__main__':
  7. print('Parent process %s.' % os.getpid())
  8. p = Process(target=run_proc, args=('test',))
  9. print('Child process will start.')
  10. p.start()
  11. p.join()
  12. print('Child process end.')

执行结果如下:

  1. Parent process 928.
  2. Process will start.
  3. Run child process test (929)...
  4. Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。

(2)进程池

如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

  1. from multiprocessing import Pool
  2. import os, time, random
  3. def long_time_task(name):
  4. print('Run task %s (%s)...' % (name, os.getpid()))
  5. start = time.time()
  6. time.sleep(random.random() * 3)
  7. end = time.time()
  8. print('Task %s runs %0.2f seconds.' % (name, (end - start)))
  9. if __name__=='__main__':
  10. print('Parent process %s.' % os.getpid())
  11. p = Pool(4)
  12. for i in range(5):
  13. p.apply_async(long_time_task, args=(i,))
  14. print('Waiting for all subprocesses done...')
  15. p.close()
  16. p.join()
  17. print('All subprocesses done.')

代码解读:

Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

请注意输出的结果,task 0123是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p = Pool(5)

就可以同时跑5个进程。

由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。

子进程

很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。

subprocess模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。

下面的例子演示了如何在Python代码中运行命令nslookup www.python.org,这和命令行直接运行的效果是一样的:

  1. import subprocess
  2. print('$ nslookup www.python.org')
  3. r = subprocess.call(['nslookup', 'www.python.org'])
  4. print('Exit code:', r)

运行结果:

  1. $ nslookup www.python.org
  2. Server: 192.168.19.4
  3. Address: 192.168.19.4#53
  4. Non-authoritative answer:
  5. www.python.org canonical name = python.map.fastly.net.
  6. Name: python.map.fastly.net
  7. Address: 199.27.79.223
  8. Exit code: 0

进程间通信

Process之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了QueuePipes等多种方式来交换数据。

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/297218
推荐阅读
相关标签
  

闽ICP备14008679号