当前位置:   article > 正文

MarkDown数学公式的详解_mark down求和公式

mark down求和公式

MarkDown数学公式的详解


例子:i=0ni2=(n2+n)(2n+1)6

求和公式(1):i=0n

求和公式(2):

i=0ni2

使一对或者两对$号,可以用不同方式显示
  • 1

大写表达式小写表达式
AAα\alpha
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ε\varepsilon
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma
TTτ\tau
Υ\Upsilonυ\upsilon
Φ\Phiϕ\phi
φ φ\varphi
XXχ\chi
Ψ\Psiψ\psi
Ω\Omegaω\omega
\ell
E\mathcal{E}
εE\varepsilon{E}

表达式代码
7x+51+y2\frac{7x+5}{1+y^2}
z=z1z=z_l
\cdots
2;3n\sqrt{2};\sqrt[n]{3}
ab=0\vec{a} \cdot \vec{b}=0
32x2dx\int ^2_3 x^2 {\rm d}x
limn+n\lim_{n\rightarrow+\infty} n
limn+n
加双$$
1i2\sum \frac{1}{i^2}
1i2\prod \frac{1}{i^2}
sin\sin
cos\cos
tan\tan
ln15\ln15
log210\log_2 10
lg7\lg7
±\pm
\mp
×\times
÷\div
\sum
\int
\iint
\prod
\neq
\leq
\geq
<\lt
>\gt
\not \lt
\star
\ast
\oplus
\circ
\bullet
\bigcup
\bigcap

表达式代码
i=0ni2=(n2+n)(2n+1)6\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}
xyz{x^y}^z
xyzx^{y^z}
xi2x_i^2
xi2x_{i^2}
ab\frac ab
()[]()[]
{and}\{ and \}
xy3\frac{\sqrt x}{y^3}
(xy3)\left (\frac{\sqrt x}{y^3} \right)
(((((x)))))\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)
||\vert
i=0i2\sum_{i=0}^\infty i^2
a+1b+1{a+1\over b+1}
\mathbb\mathbb
\Bbb\Bbb
\mathbf\mathbf,\mathcal,\mathtt,\mathscr,\mathfrak
...1/2{…}^{1/2}
limx0
\lim_{x\to 0}
(n+12k){n+1 \choose 2k},\binom{n+1}{2k}

集合论

表达式代码
\cup
\cap
\setminus
\subset
\subseteq
\subsetneq
\supset
\in
\notin
\emptyset
\varnothing

其他符号

表达式代码
\to
\rightarrow
\leftarrow
\Rightarrow
\Leftarrow
\mapsto
\land
\lor
¬\lnot
\forall
\exists
\top
\bot
\vdash
\vDash
\approx
\sim
\simeq
\cong
\equiv
\prec
\lhd
0\infty \aleph_0
\infty
\nabla
\partial
\Im
\Re
ab(modn)a\equiv b\pmod n
d^\hat{d}
x^\widehat{x}
x¯\bar{x}
xy¯\overline{xy}
x\vec{x}
xyz\overrightarrow{xyz}
xy\overleftrightarrow{xy}
B\mathrm{B}
Spec\operatorname{Spec}
5C3_5C_3

矩阵

1xx21yy21zz2

$$
    \begin{matrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{matrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

(1xx21yy21zz2)

$$
    \begin{pmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{pmatrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

[1xx21yy21zz2]

$$
    \begin{bmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{bmatrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

{1xx21yy21zz2}

$$
    \begin{Bmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{Bmatrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

|xx2yy21z2|

$$
    \begin{vmatrix}
    \cdots & x & x^2 \\
    \ddots & y & y^2 \\
    1 & \vdots & z^2 \\
    \end{vmatrix}
$$ 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

1xx21yy21zz2

$$
    \begin{Vmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{Vmatrix}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

123456

\begin{array}{cc|c}
  1&2&3\\
  4&5&6
\end{array}
  • 1
  • 2
  • 3
  • 4

37=7321122=7321227321732=7321227321732=7312117327312(112732)


\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
 & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ 
 & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
 & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ 
 & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

f(n)={n/2,if n is even3n+1,if n is odd

$$f(n) =
\begin{cases}
n/2,  & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

if n is even:n/2if n is odd:3n+1}=f(n)

$$
\left.
\begin{array}{l}
\text{if $n$ is even:}&n/2\\
\text{if $n$ is odd:}&3n+1
\end{array}
\right\}
=f(n)
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

f(n)={n2,if n is even3n+1,if n is odd

$$
f(n) =
\begin{cases}
\frac{n}{2},  & \text{if $n$ is even} \\[2ex]
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

nLeftCenterRight10.24112521189832020001+10i

$$
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

BadBettereiπ2eiπ2eiπ/2π2π2sinxdxπ/2π/2sinxdx

\begin{array}{ll} \hfill\mathrm{Bad}\hfill & \hfill\mathrm{Better}\hfill \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array}
  • 1

BadBetter{x|x2Z}{xx2Z}

\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\{x|x^2\in\Bbb Z\} & \{x\mid x^2\in\Bbb Z\} \\
\end{array}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

BadBetterSf(x)dydxSf(x)dydxVf(x)dzdydxVf(x)dzdydx

\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\int\int_S f(x)\,dy\,dx & \iint_S f(x)\,dy\,dx \\
\int\int\int_V f(x)\,dz\,dy\,dx & \iiint_V f(x)\,dz\,dy\,dx
\end{array}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

{x|x22z}

$$\left\{x\middle | \frac{x^2}{2} \in \mathbb{z}\right\}$$
  • 1

\color{black}{text}text\color{gray}{text}text\color{silver}{text}text\color{white}{text}text\color{maroon}{text}text\color{red}{text}text\color{yellow}{text}text\color{lime}{text}text\color{olive}{text}text\color{green}{text}text\color{teal}{text}text\color{aqua}{text}text\color{blue}{text}text\color{navy}{text}text\color{purple}{text}text\color{fuchsia}{text}text

\begin{array}{|rc|}
\hline
\verb+\color{black}{text}+ & \color{black}{text} \\
\verb+\color{gray}{text}+ & \color{gray}{text} \\
\verb+\color{silver}{text}+ & \color{silver}{text} \\
\verb+\color{white}{text}+ & \color{white}{text} \\
\hline
\verb+\color{maroon}{text}+ & \color{maroon}{text} \\
\verb+\color{red}{text}+ & \color{red}{text} \\
\verb+\color{yellow}{text}+ & \color{yellow}{text} \\
\verb+\color{lime}{text}+ & \color{lime}{text} \\
\verb+\color{olive}{text}+ & \color{olive}{text} \\
\verb+\color{green}{text}+ & \color{green}{text} \\
\verb+\color{teal}{text}+ & \color{teal}{text} \\
\verb+\color{aqua}{text}+ & \color{aqua}{text} \\
\verb+\color{blue}{text}+ & \color{blue}{text} \\
\verb+\color{navy}{text}+ & \color{navy}{text} \\
\verb+\color{purple}{text}+ & \color{purple}{text} \\ 
\verb+\color{fuchsia}{text}+ & \color{magenta}{text} \\
\hline
\end{array}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

#000text#00Ftext#0F0text#0FFtext#F00text#F0Ftext#FF0text#FFFtext

#000text#005text#00Atext#00Ftext#500text#505text#50Atext#50Ftext#A00text#A05text#A0Atext#A0Ftext#F00text#F05text#F0Atext#F0Ftext#080text#085text#08Atext#08Ftext#580text#585text#58Atext#58Ftext#A80text#A85text#A8Atext#A8Ftext#F80text#F85text#F8Atext#F8Ftext#0F0text#0F5text#0FAtext#0FFtext#5F0text#5F5text#5FAtext#5FFtext#AF0text#AF5text#AFAtext#AFFtext#FF0text#FF5text#FFAtext#FFFtext

[引用文献][1]
[1]: https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
[2]:http://blog.csdn.net/zdk930519/article/details/54137476
  • 1
  • 2
  • 3
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/297534
推荐阅读
相关标签
  

闽ICP备14008679号