当前位置:   article > 正文

Spark(五十二):Spark Scheduler模块之DAGScheduler流程

org.apache.spark.scheduler

导入

从一个Job运行过程中来看DAGScheduler是运行在Driver端的,其工作流程如下图:

图中涉及到的词汇概念:

1. RDD——Resillient Distributed Dataset 弹性分布式数据集。

2. Operation——作用于RDD的各种操作分为transformation和action。

3. Job——作业,一个JOB包含多个RDD及作用于相应RDD上的各种operation。

4. Stage——一个作业分为多个阶段。

5. Partition——数据分区, 一个RDD中的数据可以分成多个不同的区。

6. DAG——Directed Acycle graph,有向无环图,反应RDD之间的依赖关系。

7. Narrow dependency——窄依赖,子RDD依赖于父RDD中固定的data partition。

8. Wide Dependency——宽依赖,子RDD对父RDD中的所有data partition都有依赖。

9. Caching Managenment——缓存管理,对RDD的中间计算结果进行缓存管理以加快整体的处理速度。

在Driver端,运行一个job时,涉及到DAGSheduler的流程如下:

1)调用applicaiton_jar.jar(应用程序入口函数),应用程序的运行过程依赖SparkContext,且需要初始化SparkContext sc,通过sc就可以创建RDD了(因为RDD是调用sc来创建的);

2)初始化SparkContext过程中会初始化DAGScheduler,并调用SparkContext.createTaskScheduler(this, master, deployMode)来初始化TaskScheduler、ShedulerBackend;

3)应用程序实际上是执行的RDD的transform或者action函数,当RDD#action函数触发时,实际上这样的action函数内部会调用sc.submitJob(...)方法,在SparkContext#submitJob(...)方法内部会根据action创建ResultStage,并找到其依赖的所有ShuffleMapStage。stage之间按照顺序执行,待前一个stage执行完成成功,才能执行下一个stage,所有stage执行成功后,该job才算执行完成。

4)stage实际上可以看作为TaskSet,它实际上代表的就是一个独立的Task集合,DAGScheduler将调用TaskScheduler来对TaskSet进行作业调度;

5)TaskScheduler调度过程是将task序列化通过RPC传递给Executor,Executor上会使用TaskRunner来运行task;

6)TaskScheduler上task如果运行失败,TaskScheduler会重试处理;同样在stage失败后,DAGScheduler也会触发stage重试处理。需要注意:这里如果stage失败,对当前stage重算,而不是从上一个stage开始,这样也是DAG划分stage的原因。

Spark任务Scheduler实现

Spark任务调用主要实现类包含三个角色:

1)org.apache.spark.scheduler.DAGScheduler

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala

2)org.apache.spark.scheduler.SchedulerBackend

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/SchedulerBackend.scala

3)org.apache.spark.scheduler.TaskScheduler

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/TaskScheduler.scala

TaskScheduler是一个trait,它的作用是从DAGScheduler接收不同的Stage的任务,并向Executor提交这些任务(并为执行特别慢的任务启动备份任务)。TaskScheduler是实现多种任务调度器的集成,TaskSchedulerImpl是唯一的实现。

TaskSchedulerImpl类使用时,必选先调用TaskSchedulerImpl#initialize(backend: SchedulerBackend),TaskSchedulerImpl#start(),然后才可以调用TaskSchedulerImpl#submitTasks(taskSet: TaskSet)来提交任务,从initialize(backend: SchedulerBackend)的参数上可以看出,TaskSchedulerImpl使用过程中需要依赖SchedulerBackend。

实际上,上边提到的TaskScheduler向Executor提交任务需要依赖于SchedulerBackend。

SchedulerBackend也是一个trait,每个SchedulerBackend都会对应一个唯一的TaskScheduler。SchedulerBackend的作用是分配当前可用的资源,为Task分配计算资源(Executor),并在分配的Executor上启动Task。SchedulerBackend的最基本实现类是:CoarseGrainedSchedulerBackend,继承了CoarseGrainedSchedulerBackend的类包含:StandaloneSchedulerBackend、YarnSchedulerBackend,而YarnSchedulerBackend子类包含:YarnClientSchedulerBackend、YarnClusterSchedulerBackend。另外mesos、kubernetes也都包含CoarseGrainedSchedulerBackend的子类:MesosCoarseGrainedSchedulerBackend、KubernetesClusterSchedulerBackend等。

TaskSchedulerImpl在以下几种场景下调用TaskSchedulerImpl#reviveOffers:

1)有新任务提交时;

2)有任务执行失败时;

3)计算节点(Executor)不可用时;

4)某些任务执行过慢而需要重新分配资源时。

DAGScheduler源码分析

DAGScheduler功能:

  1)最高层的调度层,实现了stage-oriented(面向阶段)调度。DAGScheduler为每个作业计算出一个描述stages的DAG,跟踪哪些RDD和stage输出实现,并找到运行作业的最小计划。然后,它将stages封装为TaskSets提交给在集群上运行它们的底层TaskScheduler实现(TaskScheduler唯一实现类是TaskSchedulerImpl)。任务集包含完全独立的一组任务,这些任务可以根据群集中已经存在的数据(例如,前几个阶段的映射输出文件)立即运行,但如果此数据不可用,它可能会失败。

  2)Spark stages 是将RDD图在Shuffle边界处断开来创建的。具有“窄(narrow)”依赖关系的RDD操作(如map()和filter())在每个阶段中被流水线连接到一组任务中,但是具有shuffle依赖关系的操作需要多个阶段(一个阶段写入一组映射输出文件,另一个阶段在屏障后读取这些文件)。最后,每个阶段将只具有对其他阶段的shuffle依赖,并且可以在其中计算多个操作。这些操作的实际管道化发生在各种RDD的rdd.compute()函数中。

  3)除了划分stages的DAG之外,DAGScheduler还根据当前缓存状态确定运行每个task的首选位置,并将这些位置传递给底层TaskScheduler(任务调度器)。此外,它还处理由于shuffle输出文件丢失而导致的故障,在这种情况下,可能需要重新提交旧stages。在内部TaskScheduler会处理stage中不是由shuffle文件丢失引起的失败,它会在取消整个stage之前对每个任务重试几次。

  4)要从故障中恢复,同一阶段可能需要多次运行,这称为“attempts”。如果 TaskScheduler 报告某个任务由于前一阶段的映射输出文件丢失而失败,则DAGScheduler将重新提交该丢失的阶段。这是通过具有FetchFailed的CompletionEvent或ExecutorLost事件检测到的。DAGScheduler将等待一小段时间来查看其他节点或任务是否失败,然后为计算丢失任务的任何丢失阶段重新提交TaskSets(任务集)。作为这个过程的一部分,我们可能还必须为以前清理stage objects的旧(已完成)stage创建stage objects。由于stage的旧“attempts”中的任务可能仍在运行,因此必须小心映射在正确的stage对象中接收到的任何事件。

查看此代码时,有几个关键概念:

-Jobs:(由[ActiveJob]表示)是提交给调度程序的顶级工作项。例如,当用户调用诸如count()之类的操作时,作业将通过sc.submitJob()方法提交。每个作业可能需要执行多个阶段来构建中间数据。

-Stages:Stage是一组任务(TaskSet),用于计算作业中的中间结果,其中每个任务在同一个RDD的分区上计算相同的函数。

       Stage在shuffle边界处分离,这会引入一个屏障(我们必须等待上一阶段完成获取输出)。

       有两种类型的Stage(阶段):【ResultStage】(对于执行操作的最后阶段);【ShuffleMapStage】(为shuffle写入映射输出文件)。

       如果这些作业重用同一个RDD,则Stage(阶段)通常在多个作业之间共享。

-Tasks:是单独的工作单元,每个工作单元发送到一台机器。

-Cache tracking: DagScheduler会找出缓存哪些RDD以避免重新计算它们,同样会记住哪些shuffle map stage已经生成了输出文件,以避免重复shuffle的映射端。

-Preferred locations:DAGScheduler还根据其底层RDD的首选位置,或缓存或无序处理数据的位置,计算在阶段中运行每个任务的位置。

-Cleanup:当依赖于它们的正在运行的作业完成时,所有数据结构都会被清除,以防止长时间运行的应用程序中发生内存泄漏。

DAGScheduler构造函数

private[spark] class DAGScheduler(
    private[scheduler] val sc: SparkContext,
    private[scheduler] val taskScheduler: TaskScheduler,
    listenerBus: LiveListenerBus,
    mapOutputTracker: MapOutputTrackerMaster,
    blockManagerMaster: BlockManagerMaster,
    env: SparkEnv,
    clock: Clock = new SystemClock())
  extends Logging {

  def this(sc: SparkContext, taskScheduler: TaskScheduler) = {
    this(
      sc,
      taskScheduler,
      sc.listenerBus,
      sc.env.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster],
      sc.env.blockManager.master,
      sc.env)
  }

  def this(sc: SparkContext) = this(sc, sc.taskScheduler)

DAGScheduler的构造函数参数解释:

√)sc: SparkContext:当前SparkContext对象,就是applicaiton_jar.jar的main函数调用时初始化的SparkContext对象,而DAGScheduler在SparkContext初始化时初始化的SarpkContext的属性。

√)taskScheduler: TaskScheduler和DAGScheduler、SchedulerBackend都是在SparkContext初始化时初始化的SparkContext的属性,因此该参数从当前sc内置的taskScheduler获取。

√)listenerBus: LiveListenerBus异步处理事件的对象,从sc中获取。https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/LiveListenerBus.scala

√)mapOutputTracker: MapOutputTrackerMaster运行在Driver端管理shuffle map task的输出,从sc属性env:SparkEnv的mapOutputTracker属性获取。https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/MapOutputTracker.scala

1)用于跟踪阶段的映射输出位置的Driver-side类。
2)DAGScheduler使用这个类来(取消)注册映射输出状态,并查找用于执行位置感知的减少任务调度的统计信息。
3)ShuffleMapStage使用MapOutputTrackerMaster类跟踪可用/丢失的输出,以确定需要运行哪些任务。

√)blockManagerMaster: BlockManagerMaster运行在Driver端,管理整个Job的Block信息,从sc中env.blockManager.master获取。https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/BlockManagerMaster.scala

√)env: SparkEnvSpark的运行环境,从sc的env属性获取。

DAGScheduler属性

在DAGScheduler的源代码中,定义了很多属性,这些属性在DAGScheduler初始化时被初始化。

  private[spark] val metricsSource: DAGSchedulerSource = new DAGSchedulerSource(this)

  private[scheduler] val nextJobId = new AtomicInteger(0)
  private[scheduler] def numTotalJobs: Int = nextJobId.get()
  private val nextStageId = new AtomicInteger(0)

  private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]]
  private[scheduler] val stageIdToStage = new HashMap[Int, Stage]
  /**
   * Mapping from shuffle dependency ID to the ShuffleMapStage that will generate the data for
   * that dependency. Only includes stages that are part of currently running job (when the job(s)
   * that require the shuffle stage complete, the mapping will be removed, and the only record of
   * the shuffle data will be in the MapOutputTracker).
   */
  private[scheduler] val shuffleIdToMapStage = new HashMap[Int, ShuffleMapStage]
  private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob]

  // Stages we need to run whose parents aren't done
  private[scheduler] val waitingStages = new HashSet[Stage]

  // Stages we are running right now
  private[scheduler] val runningStages = new HashSet[Stage]

  // Stages that must be resubmitted due to fetch failures
  private[scheduler] val failedStages = new HashSet[Stage]

  private[scheduler] val activeJobs = new HashSet[ActiveJob]

  /**
   * Contains the locations that each RDD's partitions are cached on.  This map's keys are RDD ids
   * and its values are arrays indexed by partition numbers. Each array value is the set of
   * locations where that RDD partition is cached.
   *
   * All accesses to this map should be guarded by synchronizing on it (see SPARK-4454).
   */
  private val cacheLocs = new HashMap[Int, IndexedSeq[Seq[TaskLocation]]]

  // For tracking failed nodes, we use the MapOutputTracker's epoch number, which is sent with
  // every task. When we detect a node failing, we note the current epoch number and failed
  // executor, increment it for new tasks, and use this to ignore stray ShuffleMapTask results.
  //
  // TODO: Garbage collect information about failure epochs when we know there are no more
  //       stray messages to detect.
  private val failedEpoch = new HashMap[String, Long]

  private [scheduler] val outputCommitCoordinator = env.outputCommitCoordinator

  // A closure serializer that we reuse.
  // This is only safe because DAGScheduler runs in a single thread.
  private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()

  /** If enabled, FetchFailed will not cause stage retry, in order to surface the problem. */
  private val disallowStageRetryForTest = sc.getConf.getBoolean("spark.test.noStageRetry", false)

  /**
   * Whether to unregister all the outputs on the host in condition that we receive a FetchFailure,
   * this is set default to false, which means, we only unregister the outputs related to the exact
   * executor(instead of the host) on a FetchFailure.
   */
  private[scheduler] val unRegisterOutputOnHostOnFetchFailure =
    sc.getConf.get(config.UNREGISTER_OUTPUT_ON_HOST_ON_FETCH_FAILURE)

  /**
   * Number of consecutive stage attempts allowed before a stage is aborted.
   */
  private[scheduler] val maxConsecutiveStageAttempts =
    sc.getConf.getInt("spark.stage.maxConsecutiveAttempts",
      DAGScheduler.DEFAULT_MAX_CONSECUTIVE_STAGE_ATTEMPTS)

  /**
   * Number of max concurrent tasks check failures for each barrier job.
   */
  private[scheduler] val barrierJobIdToNumTasksCheckFailures = new ConcurrentHashMap[Int, Int]

  /**
   * Time in seconds to wait between a max concurrent tasks check failure and the next check.
   */
  private val timeIntervalNumTasksCheck = sc.getConf
    .get(config.BARRIER_MAX_CONCURRENT_TASKS_CHECK_INTERVAL)

  /**
   * Max number of max concurrent tasks check failures allowed for a job before fail the job
   * submission.
   */
  private val maxFailureNumTasksCheck = sc.getConf
    .get(config.BARRIER_MAX_CONCURRENT_TASKS_CHECK_MAX_FAILURES)

  private val messageScheduler =
    ThreadUtils.newDaemonSingleThreadScheduledExecutor("dag-scheduler-message")

  private[spark] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)

√)metricsSource: DAGSchedulerSource:metrics system的Source角色,内注册了failedStages、runningStages、waitingStages、allJobs、activeJobs这些度量监控。https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/DAGSchedulerSource.scala
√)nextJobId:AtomicInteger:生成jobId
√)numTotalJobs: Int:总的job数
√)nextStageId:AtomicInteger:下一个StageId
√)jobIdToStageIds:HashMap[Int, HashSet[Int]]:记录某个job与其包含的所有stageId的映射
√)stageIdToStage:HashMap[Int, Stage]:记录stageId与Stage的映射
√)shuffleIdToMapStage:HashMap[Int, ShuffleMapStage]:记录每一个shuffle对应的ShuffleMapStage,key为shuffleId。
√)jobIdToActiveJob:HashMap[Int, ActiveJob]:记录处于Active状态的Job,key为jobId,value为ActiveJob类型的对象。
√)waitingStages:HashSet[Stage]:等待运行的stage,一般这些是在登台Parent Stage运行完成才能开始。
√)runningStages:HashSet[Stage]:处于Running状态的stage
√)failedStages:HashSet[Stage]:处于Failed状态的stage,失败原因因为fetch failures的stage,并等待重新提交。
√)activeJobs:HashSet[ActiveJob]:处于Active状态的job列表
√)cacheLocs:HashMap[Int, IndexedSeq[Seq[TaskLocation]]]:维护着RDD的partitions 的 location信息。Map的key是rdd的id,value是rdd对应的partition编号索引的数组。每个数组值都是缓存该rdd partition的location set集合
√)failedEpoch:HashMap[String, Long]:对于跟踪失败的节点,我们使用MapOutputTracker的epoch编号,它与每个任务一起发送。当我们检测到一个节点失败时,我们记录到当前的epoch编号和失败的执行器,为新任务增加它,并使用它忽略杂散的ShuffleMapTask结果。
√)outputCommitCoordinator:env.outputCommitCoordinator:输出提交协调器
√)closureSerializer:JavaSerializer:重用的闭包序列化程序。它是安全的,因为DagScheduler在单个线程中运行。
√)disallowStageRetryForTest:Boolean:变量“spark.test.noStageRetry”,如果启用,FetchFailed将不会导致阶段重试,以显示问题。
√)unRegisterOutputOnHostOnFetchFailure:Boolean:是否在接收到FetchFailure的情况下注销主机上的所有输出,这将设置为默认值false,这意味着在FetchFailure时,我们只注销与确切的执行器(而不是主机)相关的输出。
√)maxConsecutiveStageAttempts:Int:变量“spark.stage.maxConsecutiveAttempts”,中止stage之前允许的连续stage尝试次数。
√)barrierJobIdToNumTasksCheckFailures:ConcurrentHashMap[Int, Int]:每个屏障作业的最大并发任务检查失败数。
√)timeIntervalNumTasksCheck:Int:在最大并发任务检查失败和下一次检查之间等待的时间(秒)。
√)maxFailureNumTasksCheck:Int:作业提交失败前允许的最大并发任务检查失败数。
√)messageScheduler:ScheduledExecutorService:dag-scheduler-message线程池调度器(调度的线程内部通过eventProcessLoop来实现: ResubmitFailedStages/JobSubmitted )
√)eventProcessLoop:DAGSchedulerEventProcessLoop:DAGSchedulerEventProcessLoop类定义在DAGScheduler类文件下,集成了EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") 。

  • EventLoop实际上内置了一个用来存储消息的队列,对外提供了post方法用来接收消息存放到队列中,一个消费队列中消息的线程,消费线程以死循环方式获取队列中消息,当获取到消息后调用 onReceive(msg)进行消息处理。
  • DAGSchedulerEventProcessLoop的构造函数接收dagScheduler: DAGScheduler,在onReceive方法中会根据消息类型调用dagScheduler的不同方法进行消息处理。
  • DAGScheduler与EventLoop之间配合工作图:

在DAGScheduler类的属性中定义eventProcessLoop:DAGSchedulerEventProcessLoop成员变量,DAGScheduler类初始化过程中会初始化变量eventProcessLoop = new DAGSchedulerEventProcessLoop(this),初始化最后一步是调用eventProcessLoop.start()来启动该事件循环处理。
接下来我们来分析eventProcessLoop的相关定义以及它的工作方式:

EventLoop定义:

EventLoop是个消息异步处理策略抽象类:

/**
 * An event loop to receive events from the caller and process all events in the event thread. It
 * will start an exclusive event thread to process all events.
 *
 * Note: The event queue will grow indefinitely. So subclasses should make sure `onReceive` can
 * handle events in time to avoid the potential OOM.
 */
private[spark] abstract class EventLoop[E](name: String) extends Logging {

  private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()

  private val stopped = new AtomicBoolean(false)

  // Exposed for testing.
  private[spark] val eventThread = new Thread(name) {
    setDaemon(true)

    override def run(): Unit = {
      try {
        while (!stopped.get) {
          val event = eventQueue.take()
          try {
            onReceive(event)
          } catch {
            case NonFatal(e) =>
              try {
                onError(e)
              } catch {
                case NonFatal(e) => logError("Unexpected error in " + name, e)
              }
          }
        }
      } catch {
        case ie: InterruptedException => // exit even if eventQueue is not empty
        case NonFatal(e) => logError("Unexpected error in " + name, e)
      }
    }

  }

  def start(): Unit = {
    if (stopped.get) {
      throw new IllegalStateException(name + " has already been stopped")
    }
    // Call onStart before starting the event thread to make sure it happens before onReceive
    onStart()
    eventThread.start()
  }

  def stop(): Unit = {
    if (stopped.compareAndSet(false, true)) {
      eventThread.interrupt()
      var onStopCalled = false
      try {
        eventThread.join()
        // Call onStop after the event thread exits to make sure onReceive happens before onStop
        onStopCalled = true
        onStop()
      } catch {
        case ie: InterruptedException =>
          Thread.currentThread().interrupt()
          if (!onStopCalled) {
            // ie is thrown from `eventThread.join()`. Otherwise, we should not call `onStop` since
            // it's already called.
            onStop()
          }
      }
    } else {
      // Keep quiet to allow calling `stop` multiple times.
    }
  }

  /**
   * Put the event into the event queue. The event thread will process it later.
   */
  def post(event: E): Unit = {
    eventQueue.put(event)
  }

  /**
   * Return if the event thread has already been started but not yet stopped.
   */
  def isActive: Boolean = eventThread.isAlive

  /**
   * Invoked when `start()` is called but before the event thread starts.
   */
  protected def onStart(): Unit = {}

  /**
   * Invoked when `stop()` is called and the event thread exits.
   */
  protected def onStop(): Unit = {}

  /**
   * Invoked in the event thread when polling events from the event queue.
   *
   * Note: Should avoid calling blocking actions in `onReceive`, or the event thread will be blocked
   * and cannot process events in time. If you want to call some blocking actions, run them in
   * another thread.
   */
  protected def onReceive(event: E): Unit

  /**
   * Invoked if `onReceive` throws any non fatal error. Any non fatal error thrown from `onError`
   * will be ignored.
   */
  protected def onError(e: Throwable): Unit

}

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/util/EventLoop.scala

1)内置了一个消息队列eventQueue: BlockingQueue[E],配合实现消息存储、消息消费使用;
2)对外开放了接收消息的post方法:接收到外部消息并存入队列,等待被消费;
3)内置了一个消费线程eventThread,消费线程以阻塞死循环方式消费队列中的消息,消费处理接口函数是onReceive(event: E),消费异常函数接口onError(e: Throwable);
4)还提供了消费线程启动方法start,在调用线程启动方法:eventThread.start()之前,需要调用onStart()为启动做准备接口函数;
5)还提供了消费线程停止方法stop,在调用线程停止方法:eventThread.interrupt&eventThread.join()之后,需要调用onStop()做补充接口函数。

DAGSchedulerEventProcessLoop定义:

顾名思义,DAGSchedulerEvent事件循环处理。

private[scheduler] class DAGSchedulerEventProcessLoop(dagScheduler: DAGScheduler)
  extends EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") with Logging {

  private[this] val timer = dagScheduler.metricsSource.messageProcessingTimer

  /**
   * The main event loop of the DAG scheduler.
   */
  override def onReceive(event: DAGSchedulerEvent): Unit = {
    val timerContext = timer.time()
    try {
      doOnReceive(event)
    } finally {
      timerContext.stop()
    }
  }

  private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
    case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)

    case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
      dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)

    case StageCancelled(stageId, reason) =>
      dagScheduler.handleStageCancellation(stageId, reason)

    case JobCancelled(jobId, reason) =>
      dagScheduler.handleJobCancellation(jobId, reason)

    case JobGroupCancelled(groupId) =>
      dagScheduler.handleJobGroupCancelled(groupId)

    case AllJobsCancelled =>
      dagScheduler.doCancelAllJobs()

    case ExecutorAdded(execId, host) =>
      dagScheduler.handleExecutorAdded(execId, host)

    case ExecutorLost(execId, reason) =>
      val workerLost = reason match {
        case SlaveLost(_, true) => true
        case _ => false
      }
      dagScheduler.handleExecutorLost(execId, workerLost)

    case WorkerRemoved(workerId, host, message) =>
      dagScheduler.handleWorkerRemoved(workerId, host, message)

    case BeginEvent(task, taskInfo) =>
      dagScheduler.handleBeginEvent(task, taskInfo)

    case SpeculativeTaskSubmitted(task) =>
      dagScheduler.handleSpeculativeTaskSubmitted(task)

    case GettingResultEvent(taskInfo) =>
      dagScheduler.handleGetTaskResult(taskInfo)

    case completion: CompletionEvent =>
      dagScheduler.handleTaskCompletion(completion)

    case TaskSetFailed(taskSet, reason, exception) =>
      dagScheduler.handleTaskSetFailed(taskSet, reason, exception)

    case ResubmitFailedStages =>
      dagScheduler.resubmitFailedStages()
  }

  override def onError(e: Throwable): Unit = {
    logError("DAGSchedulerEventProcessLoop failed; shutting down SparkContext", e)
    try {
      dagScheduler.doCancelAllJobs()
    } catch {
      case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t)
    }
    dagScheduler.sc.stopInNewThread()
  }

  override def onStop(): Unit = {
    // Cancel any active jobs in postStop hook
    dagScheduler.cleanUpAfterSchedulerStop()
  }
}

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala

1)DAGSchedulerEventProcessLoop继承了EventLoop抽象类(其实EventLoop也是泛型类,这里泛型类型为DAGSchedulerEvent),并在构造函数中传递了DAGScheduler类对象;
2)对外提供了DAGSchedulerEvent接收DAGSchedulerEvent事件,并将接收到DAGSchedulerEvent事件存储到队列中;
3)在内部阻塞死循环方式去从队列中获取DAGSchedulerEvent事件,获取到后并处理它[调用onReceive(event: DAGSchedulerEvent)方法];
4)onReceive方式内部调用了私有方法doOnReceive(event),在doOnReceive方法中会根据event类型不同去调用dagScheduler的不同handleXxx方法(真正事件处理最后还归结于DAGScheduler中);
5)DAGSchedulerEvent是一个接口类,它的实现类包含:https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/DAGSchedulerEvent.scala

JobSubmitted:已提交作业(RDD)

MapStageSubmitted:已提交MapStage

StageCancelled:已取消Stage

JobCancelled:已取消Job

JobGroupCancelled:已取消JobGroup

AllJobsCancelled:已取消所有Job

BeginEvent:开始Event

GettingResultEvent:获取结果Event

CompletionEvent:完成Event

ExecutorAdded:已添加Executor

ExecutorLost:Executor丢失

WorkerRemoved:已被移除Worker

TaskSetFailed:已除失败TaskSet

ResubmitFailedStages:重新提交已失败的Stages

SpeculativeTaskSubmitted:已提交推测性Task

DAGScheduler的生命周期

那么下边将会结合代码对DAGScheduler整个生命周期进行介绍,DAGScheduler的生命周期:

1)初始化DAGScheduler

2)根据RDD DAG划分Stages

3)对Stage进行调度、Stage容错

4)实例销毁

1)DAGScheduler之初始化

 当一个spark application代码被提交yanr上时,比如yarn-cluster方式提交,通过SparkSubmit->YarnClusterApplication类中运行的是Client中run方法,Client#run()->ApplicationMaster#userClassThread用来执行application main的线程,当执行applicatin main函数时,会先初始化SparkContext对象,在初始化SparkContext过程会初始化DAGScheduler:

  @volatile private var _dagScheduler: DAGScheduler = _
  。。。
  private[spark] def dagScheduler: DAGScheduler = _dagScheduler
  private[spark] def dagScheduler_=(ds: DAGScheduler): Unit = {
    _dagScheduler = ds
  }
  。。。
  // Create and start the scheduler
  val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
  _schedulerBackend = sched
  _taskScheduler = ts
  _dagScheduler = new DAGScheduler(this)
  _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

  // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
  // constructor
  _taskScheduler.start()

在DAGScheduler初始化过程中会初始化DAGScheduler变量eventProcessLoop = new DAGSchedulerEventProcessLoop(this),初始化最后一步是调用eventProcessLoop.start()来启动该事件循环处理。

2)DAGScheduler之根据RDD DAG划分Stages

application jar的代码[RDD(Spark Core),注意Dataset、DataFrame、sparkSession.sql("select ...")经过catalyst代码解析会将代码转化为RDD,
SparkSQL底层依然是RDD]最终是RDD计算,RDD计算分为两类:transform、action。
Each RDD has 2 sets of parallel operations: transformation and action.(1)Transformation:Return a MappedRDD[U] by applying function f to each element

map(func)

filter(func)

flatMap(func)

mapPartitions(func)

mapPartitionsWithIndex(func)

sample(withReplacement, fraction, seed)

union(otherDataset)

intersection(otherDataset)

distinct([numTasks]))

groupByKey([numTasks])

reduceByKey(func, [numTasks])

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

sortByKey([ascending], [numTasks])

join(otherDataset, [numTasks])

cogroup(otherDataset, [numTasks])

cartesian(otherDataset)

pipe(command, [envVars])

coalesce(numPartitions)

repartition(numPartitions)

repartitionAndSortWithinPartitions(partitioner)

(2)Action:Return T by reducing the elements using specified commutative and associative binary operator

reduce(func)

collect()

count()

first()

take(n)

takeOrdered(n, [ordering])

saveAsTextFile(path)

saveAsSequenceFile(path)

saveAsObjectFile(path)

countByKey()

foreach(func)

在applicaiton jar代码开始执行时,当遇到action操作时,就会调用sc.runJob(...)。下边以WordCount为例来展开RDD DAG图划分Stage流程:

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    val wordFile = "E:\\personOrder.csv"
    val conf = new SparkConf().setMaster("local[1,1]").setAppName("wordcount");
    val sc = new SparkContext(conf)
    val input = sc.textFile(wordFile, 2).cache()
    val lines = input.flatMap(line => line.split("[,|-]"))
    val count = lines.map(word => (word, 1)).reduceByKey { case (x, y) => x + y }
    count.foreach(println)
  }
}

当application jar的main被调用,代码执行到count.foreach(println)时,RDD#foreach底层实现如下:

  /**
   * Applies a function f to all elements of this RDD.
   */
  def foreach(f: T => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
  }

SparkContext#runJob用来提交job的方法
在RDD中的一组给定partitions上运行函数,并将结果传递给给定的处理程序函数。这是Spark中所有操作的主要入口点。

   /**
   * Run a function on a given set of partitions in an RDD and pass the results to the given
   * handler function. This is the main entry point for all actions in Spark.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   * partitions of the target RDD, e.g. for operations like `first()`
   * @param resultHandler callback to pass each result to
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

参数解析:
1)rdd:要在其上运行任务的目标RDD
2)func:在RDD的每个分区上运行的函数
3)partitions:要运行的分区集;某些作业可能不希望在目标RDD的所有分区上进行计算,例如对于“first()”之类的操作。`。生成方式:{0 until rdd.partitions.length}

RDD#first方法实现:

  /**
   * Return the first element in this RDD.
   */
  def first(): T = withScope {
    take(1) match {
      case Array(t) => t
      case _ => throw new UnsupportedOperationException("empty collection")
    }
  }

从上边代码我们看出RDD#first内部是调用RDD#take(num)方法,那么我们来查看RDD#take方法:

  /**
   * Take the first num elements of the RDD. It works by first scanning one partition, and use the
   * results from that partition to estimate the number of additional partitions needed to satisfy
   * the limit.
   *
   * @note This method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @note Due to complications in the internal implementation, this method will raise
   * an exception if called on an RDD of `Nothing` or `Null`.
   */
  def take(num: Int): Array[T] = withScope {
    val scaleUpFactor = Math.max(conf.getInt("spark.rdd.limit.scaleUpFactor", 4), 2)
    if (num == 0) {
      new Array[T](0)
    } else {
      val buf = new ArrayBuffer[T]
      val totalParts = this.partitions.length
      var partsScanned = 0
      while (buf.size < num && partsScanned < totalParts) {
        // The number of partitions to try in this iteration. It is ok for this number to be
        // greater than totalParts because we actually cap it at totalParts in runJob.
        var numPartsToTry = 1L
        val left = num - buf.size
        if (partsScanned > 0) {
          // If we didn't find any rows after the previous iteration, quadruple and retry.
          // Otherwise, interpolate the number of partitions we need to try, but overestimate
          // it by 50%. We also cap the estimation in the end.
          if (buf.isEmpty) {
            numPartsToTry = partsScanned * scaleUpFactor
          } else {
            // As left > 0, numPartsToTry is always >= 1
            numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
            numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)
          }
        }

        val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
        val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)

        res.foreach(buf ++= _.take(num - buf.size))
        partsScanned += p.size
      }

      buf.toArray
    }
  }

取RDD的num个元素。它内部实现:首先扫描一个分区,然后使用该分区的结果来估计是否满足num个元素结果,不满足则尝试从下一个分区中获取,依次循环处理知道取够num个元素。
@注意:只有当结果数组很小时才应使用此方法,因为所有数据都加载到驱动程序的内存中。
@注意:由于内部实现的复杂性,如果对“Nothing”或“null”的RDD调用此方法,则会引发异常。

4)resultHandler:回调函数,以将每个分区结果传递给Xxx,

比如:

  /**
   * Run a function on a given set of partitions in an RDD and return the results as an array.
   * The function that is run against each partition additionally takes `TaskContext` argument.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   * partitions of the target RDD, e.g. for operations like `first()`
   * @return in-memory collection with a result of the job (each collection element will contain
   * a result from one partition)
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int]): Array[U] = {
    val results = new Array[U](partitions.size)
    runJob[T, U](rdd, func, partitions, (index, res) => results(index) = res)
    results
  }

上边代码中:resultHadnler是:(index, res) => results(index) = res;将每个partittion中计算结果,赋值给results[partition index],最终并返回results结果集。

DAGScheduler#runJob方法:

在SparkContext#runJob方法内部会调用dagScheduler.runJob(xxx)方法,也就是将stage划分和任务提交分配了dagScheduler来处理,来看下DAGScheduler#runJob代码:

  /**
   * Run an action job on the given RDD and pass all the results to the resultHandler function as
   * they arrive.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   *   partitions of the target RDD, e.g. for operations like first()
   * @param callSite where in the user program this job was called
   * @param resultHandler callback to pass each result to
   * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
   *
   * @note Throws `Exception` when the job fails
   */
  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
    ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
    waiter.completionFuture.value.get match {
      case scala.util.Success(_) =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      case scala.util.Failure(exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }

runJob方法的解释:对给定的RDD运行操作作业,并在结果到达时将所有结果传递给resultHandler函数。
参数解析:
1)rdd:要在其上运行任务的参数RDD目标RDD
2)func:在RDD的每个分区上运行的函数
3)partitions:要运行的分区的集;某些作业可能不希望在目标RDD的所有分区上进行计算,例如,对于first()之类的操作。
4)callSite:在用户程序中调用此作业的位置
5)resultHandler:回调函数,以将每个分区结果传递给Xxx
6)properties:要附加到此作业的scheduler属性,例如fair scheduler pool name
注意:在作业失败时引发“Exception”
DAGScheduler#runJob内部实现分析:
1)调用DAGScheduler#submitJob(...)方法提交作业,并接收返回值waiter。
2)使用ThreadUtils.awaitRedy(...)来等待waiter处理完成,实际上这里是阻塞等待Job结束;
3)根据waiter完成后返回值作相应响应:Success,打印:‘Job x finished:xxx’;Failure,打印:‘Job x failed:xxx’,并抛出异常。

DAGScheduler#submitJob(...)方法

  /**
   * Submit an action job to the scheduler.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   *   partitions of the target RDD, e.g. for operations like first()
   * @param callSite where in the user program this job was called
   * @param resultHandler callback to pass each result to
   * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
   *
   * @return a JobWaiter object that can be used to block until the job finishes executing
   *         or can be used to cancel the job.
   *
   * @throws IllegalArgumentException when partitions ids are illegal
   */
  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // Check to make sure we are not launching a task on a partition that does not exist.
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      // Return immediately if the job is running 0 tasks
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }

DAGScheduler#submitJob(...)方法内部实现:
第一步:封装一个JobWaiter对象;
第二步:将JobWaiter对象赋值给JobSubmitted的listener属性,并将JobSubmitted(DAGSchedulerEvent事件)对象传递给eventProcessLoop事件循环处理器。eventProcessLoop内部事件消息处理线程将会接收JobSubmitted事件,并调用dagScheduler.handleJobSubmitted(...)方法来处理事件;
第三步:返回JobWaiter对象。

DAGScheduler#handleJobSubmitted(...)方法:

需要说明:该方法是被eventProcessLoop:DAGSchedulerEventProcessLoop下的事件处理线程(获取到JobSubmitted事件后)调用的,因此该方法与主线程不是同一个线程下执行的。

 private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: BarrierJobSlotsNumberCheckFailed =>
        logWarning(s"The job $jobId requires to run a barrier stage that requires more slots " +
          "than the total number of slots in the cluster currently.")
        // If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
        val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
          new BiFunction[Int, Int, Int] {
            override def apply(key: Int, value: Int): Int = value + 1
          })
        if (numCheckFailures <= maxFailureNumTasksCheck) {
          messageScheduler.schedule(
            new Runnable {
              override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
                partitions, callSite, listener, properties))
            },
            timeIntervalNumTasksCheck,
            TimeUnit.SECONDS
          )
          return
        } else {
          // Job failed, clear internal data.
          barrierJobIdToNumTasksCheckFailures.remove(jobId)
          listener.jobFailed(e)
          return
        }

      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }
    // Job submitted, clear internal data.
    barrierJobIdToNumTasksCheckFailures.remove(jobId)

    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    submitStage(finalStage)
  }

 当Job提交后,JobSubmitted事件会被eventProcessLoop捕获到,然后进入本方法中。开始处理Job,并执行Stage的划分。

Stage的划分:

Stage的划分过程中,会涉及到宽依赖和窄依赖的概念,宽依赖是Stage的分界线,连续的窄依赖都属于同一Stage。 

比如上图中,在RDD G处调用了Action操作,在划分Stage时,会从G开始逆向分析,G依赖于B和F,其中对B是窄依赖,对F是宽依赖,所以F和G不能算在同一个Stage中,即在F和G之间会有一个Stage分界线。上图中还有一处宽依赖在A和B之间,所以这里还会分出一个Stage。最终形成了3个Stage,由于Stage1和Stage2是相互独立的,所以可以并发执行,等Stage1和Stage2准备就绪后,Stage3才能开始执行。 

Stage有两个类型,最后的Stage为ResultStage类型,除此之外的Stage都是ShuffleMapStage类型。

Stage类定义:

private[scheduler] abstract class Stage(
    val id: Int,
    val rdd: RDD[_],
    val numTasks: Int,
    val parents: List[Stage],
    val firstJobId: Int,
    val callSite: CallSite)
  extends Logging {

  val numPartitions = rdd.partitions.length

  /** Set of jobs that this stage belongs to. */
  val jobIds = new HashSet[Int]

  /** The ID to use for the next new attempt for this stage. */
  private var nextAttemptId: Int = 0

  val name: String = callSite.shortForm
  val details: String = callSite.longForm

  /**
   * Pointer to the [[StageInfo]] object for the most recent attempt. This needs to be initialized
   * here, before any attempts have actually been created, because the DAGScheduler uses this
   * StageInfo to tell SparkListeners when a job starts (which happens before any stage attempts
   * have been created).
   */
  private var _latestInfo: StageInfo = StageInfo.fromStage(this, nextAttemptId)

  /**
   * Set of stage attempt IDs that have failed. We keep track of these failures in order to avoid
   * endless retries if a stage keeps failing.
   * We keep track of each attempt ID that has failed to avoid recording duplicate failures if
   * multiple tasks from the same stage attempt fail (SPARK-5945).
   */
  val failedAttemptIds = new HashSet[Int]

  private[scheduler] def clearFailures() : Unit = {
    failedAttemptIds.clear()
  }

  /** Creates a new attempt for this stage by creating a new StageInfo with a new attempt ID. */
  def makeNewStageAttempt(
      numPartitionsToCompute: Int,
      taskLocalityPreferences: Seq[Seq[TaskLocation]] = Seq.empty): Unit = {
    val metrics = new TaskMetrics
    metrics.register(rdd.sparkContext)
    _latestInfo = StageInfo.fromStage(
      this, nextAttemptId, Some(numPartitionsToCompute), metrics, taskLocalityPreferences)
    nextAttemptId += 1
  }

  /** Returns the StageInfo for the most recent attempt for this stage. */
  def latestInfo: StageInfo = _latestInfo

  override final def hashCode(): Int = id

  override final def equals(other: Any): Boolean = other match {
    case stage: Stage => stage != null && stage.id == id
    case _ => false
  }

  /** Returns the sequence of partition ids that are missing (i.e. needs to be computed). */
  def findMissingPartitions(): Seq[Int]
}

Stage的RDD参数只有一个RDD, final RDD, 而不是一系列的RDD。
因为在一个stage中的所有RDD都是map, partition不会有任何改变, 只是在data依次执行不同的map function所以对于TaskScheduler而言, 一个RDD的状况就可以代表这个stage。
Stage是一组并行任务,所有这些任务都在计算需要作为一部分运行的相同函数
在Spark Job中,所有任务都具有相同的shuffle依赖项。每个任务的DAG运行由调度程序在发生shuffle的边界处分为多个stages,然后DagScheduler以拓扑顺序运行这些阶段。
每个stage都可以是shuffle map stage,在这种情况下,任务的结果将输入到其他阶段或结果阶段,在这种情况下,其任务直接计算Spark action(例如count()、save()等)在RDD上运行函数。对于shuffle map stages,我们还跟踪每个输出分区所在的节点。
每个stage也有一个FirstJobID,用于标识第一个提交阶段的作业。当使用FIFO调度时,这允许首先计算早期作业的阶段,或者在失败时更快地恢复。
最后,由于故障恢复,一个stage可以在多次尝试中重新执行。在这种情况下,stage对象将跟踪要传递给侦听器(listeners)或Web UI的多个StageInfo对象。
最新版本将通过LatestInfo访问。
@id 唯一阶段ID
@rdd 这个阶段运行的RDD:对于shuffle map stage,是我们运行映射任务的RDD,而对于结果阶段,是我们运行操作的目标RDD
@tasks 阶段中任务的总数;结果阶段可能不需要计算所有分区,例如first()、lookup()和take()。
@parents 此阶段依赖的阶段列表(通过shuffle dependencies)。
@firstJobId 此阶段所属的第一个作业的ID,用于FIFO调度。
@callSite 与此阶段关联的用户程序中的调用站点位置:创建目标RDD的位置、shuffle map stage的位置或调用结果阶段的action的位置。

1)DAGScheduler#handleJobSubmitted(...)方法之createResultStage

    var finalStage: ResultStage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: BarrierJobSlotsNumberCheckFailed =>
        logWarning(s"The job $jobId requires to run a barrier stage that requires more slots " +
          "than the total number of slots in the cluster currently.")
        // If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
        val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
          new BiFunction[Int, Int, Int] {
            override def apply(key: Int, value: Int): Int = value + 1
          })
        if (numCheckFailures <= maxFailureNumTasksCheck) {
          messageScheduler.schedule(
            new Runnable {
              override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
                partitions, callSite, listener, properties))
            },
            timeIntervalNumTasksCheck,
            TimeUnit.SECONDS
          )
          return
        } else {
          // Job failed, clear internal data.
          barrierJobIdToNumTasksCheckFailures.remove(jobId)
          listener.jobFailed(e)
          return
        }

      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }

上边这段代码是 DAGScheduler#handleJobSubmitted 中划分Stage的主要实现代码。前面提到了Stage的划分是从最后一个Stage开始逆推的,每遇到一个宽依赖处,就分裂成另外一个Stage,依此类推直到Stage划分完毕为止。并且,只有最后一个Stage的类型是ResultStage类型。

因此,finalStage的类型是:ResultStage。

2)DAGScheduler#createResultStage(...)

  /**
   * Create a ResultStage associated with the provided jobId.
   */
  private def createResultStage(
      rdd: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      jobId: Int,
      callSite: CallSite): ResultStage = {
    checkBarrierStageWithDynamicAllocation(rdd)
    checkBarrierStageWithNumSlots(rdd)
    checkBarrierStageWithRDDChainPattern(rdd, partitions.toSet.size)
    // 获取当前Stage的parent Stage,这个方法是划分Stage的核心实现
    val parents = getOrCreateParentStages(rdd, jobId)
    val id = nextStageId.getAndIncrement()
    // 创建当前最后的ResultStage
    val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
    // 将ResultStage与stageId相关联
    stageIdToStage(id) = stage
    // 更新该job中包含的stage
    updateJobIdStageIdMaps(jobId, stage)
    // 返回ResultStage
    stage
  }

上边3个check解释:

1)checkBarrierStageWithDynamicAllocation(rdd):不支持在启用动态资源分配的情况下运行屏障阶段,这将导致一些混乱的行为(例如,在启用动态资源分配的情况下,我们可能会获得一些执行者(但不足以在屏障阶段启动所有任务),并在以后释放它们执行器空闲时间到期,然后重新获取)。如果在启用动态资源分配的情况下运行屏障阶段,将在作业提交时执行检查并快速失败。

2)checkBarrierStageWithNumSlots(rdd):检查屏障阶段是否需要比当前活动插槽总数更多的插槽(以便能够一起启动屏障阶段中的所有任务)。如果尝试提交一个比当前总数需要更多插槽的屏障阶段,则提前检查失败。如果检查连续失败,超过作业的配置数量,则当前作业提交失败。

3)checkBarrierStageWithRDDChainPattern(rdd, partitions.toSet.size):检查以确保我们不使用不支持的RDD链模式启动屏障阶段。不支持以下模式:

   1.与生成的RDD具有不同分区数的祖先RDD(例如union()/coalesce()/first()/take()/PartitionPruningRDD);

   2.第二步。依赖多个屏障RDD的RDD(如barrierRdd1.zip(barrierRdd2))。

3)DAGScheduler#getOrCreateParentStages(...)

获取或创建给定RDD的parentStage列表。将使用提供的firstJobId创建新阶段。

  /**
   * Get or create the list of parent stages for a given RDD.  The new Stages will be created with
   * the provided firstJobId.
   */
  private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
    getShuffleDependencies(rdd).map { shuffleDep =>
      getOrCreateShuffleMapStage(shuffleDep, firstJobId)
    }.toList
  }

这个方法主要是为当前的RDD向前探索,找到宽依赖处划分出parentStage。

4)DAGScheduler#getShuffleDependencies(...)

采用的是深度优先遍历找到Action算子的父依赖中的宽依赖

这个是最主要的方法,要看懂这个方法,其实后面的就好理解,最好结合这例子上面给出的RDD逻辑依赖图,比较容易看出来,根据上面的RDD逻辑依赖图,其返回的ShuffleDependency就是RDD2和RDD1,RDD7和RDD6的依赖。

如果存在A<-B<-C,这两个都是shuffle依赖,那么对于C其只返回B的shuffle依赖,而不会返回A

  /**
   * Returns shuffle dependencies that are immediate parents of the given RDD.
   *
   * This function will not return more distant ancestors.  
   * For example, if C has a shuffle dependency on B which has a shuffle dependency on A: 
   *     A <-- B <-- C calling this function with rdd C will only return the B <-- C dependency.
   *
   * This function is scheduler-visible for the purpose of unit testing.
   */
  private[scheduler] def getShuffleDependencies(
      rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
    //用来存放依赖
    val parents = new HashSet[ShuffleDependency[_, _, _]]
    //遍历过的RDD放入这个里面
    val visited = new HashSet[RDD[_]]    
    
    //创建一个待遍历RDD的栈结构
    val waitingForVisit = new ArrayStack[RDD[_]]
    //压入finalRDD,逻辑图中的RDD9
    waitingForVisit.push(rdd)
    
    //循环遍历这个栈结构
    while (waitingForVisit.nonEmpty) {
      val toVisit = waitingForVisit.pop()
      
      // 如果RDD没有被遍历过,则执行if内部的代码
      if (!visited(toVisit)) {      
        //然后把其放入已经遍历队列中
        visited += toVisit
        //得到依赖,我们知道依赖中存放的有父RDD的对象
        toVisit.dependencies.foreach {
          //如果这个依赖是shuffle依赖,则放入返回队列中
          case shuffleDep: ShuffleDependency[_, _, _] =>
            parents += shuffleDep
          //如果不是shuffle依赖,把其父RDD压入待访问栈中,从而进行循环
          case dependency =>
            waitingForVisit.push(dependency.rdd)
        }
      }
    }
    parents
  }

5)DAGScheduler#getOrCreateShuffleMapStage(...)

如果shuffleIdToMapStage中存在shuffle,则获取shuffle map stage。否则,如果shuffle map stage不存在,该方法将创建shuffle map stage以及任何丢失的parent shuffle map stage。

  /**
   * Gets a shuffle map stage if one exists in shuffleIdToMapStage. Otherwise, if the
   * shuffle map stage doesn't already exist, this method will create the shuffle map stage in
   * addition to any missing ancestor shuffle map stages.
   */
  private def getOrCreateShuffleMapStage(
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int): ShuffleMapStage = {
    shuffleIdToMapStage.get(shuffleDep.shuffleId) match {
      case Some(stage) =>
        stage
    
      case None =>
        // Create stages for all missing ancestor shuffle dependencies.
        getMissingAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
          // Even though getMissingAncestorShuffleDependencies only returns shuffle dependencies
          // that were not already in shuffleIdToMapStage, it's possible that by the time we
          // get to a particular dependency in the foreach loop, it's been added to
          // shuffleIdToMapStage by the stage creation process for an earlier dependency. See
          // SPARK-13902 for more information.
          if (!shuffleIdToMapStage.contains(dep.shuffleId)) {
            createShuffleMapStage(dep, firstJobId)
          }
        }
        // Finally, create a stage for the given shuffle dependency.
        createShuffleMapStage(shuffleDep, firstJobId)
    }
  }

6)DAGScheduler#createShuffleMapStage(...)

创建一个ShuffleMapStage,它生成给定的shuffle依赖项的分区。如果先前运行的stage生成了相同的shuffle 数据,则此函数将复制先前shuffle 中仍然可用的输出位置,以避免不必要地重新生成数据。

  /**
   * Creates a ShuffleMapStage that generates the given shuffle dependency's partitions. If a
   * previously run stage generated the same shuffle data, this function will copy the output
   * locations that are still available from the previous shuffle to avoid unnecessarily
   * regenerating data.
   */
  def createShuffleMapStage(shuffleDep: ShuffleDependency[_, _, _], jobId: Int): ShuffleMapStage = {
    val rdd = shuffleDep.rdd
    checkBarrierStageWithDynamicAllocation(rdd)
    checkBarrierStageWithNumSlots(rdd)
    checkBarrierStageWithRDDChainPattern(rdd, rdd.getNumPartitions)
    val numTasks = rdd.partitions.length
    val parents = getOrCreateParentStages(rdd, jobId)
    val id = nextStageId.getAndIncrement()
    val stage = new ShuffleMapStage(
      id, rdd, numTasks, parents, jobId, rdd.creationSite, shuffleDep, mapOutputTracker)

    stageIdToStage(id) = stage
    shuffleIdToMapStage(shuffleDep.shuffleId) = stage
    updateJobIdStageIdMaps(jobId, stage)

    if (!mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
      // Kind of ugly: need to register RDDs with the cache and map output tracker here
      // since we can't do it in the RDD constructor because # of partitions is unknown
      logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
      mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
    }
    stage
  }

 通过上面的源代码分析,结合RDD的逻辑执行图,我们可以看出,这个job拥有三个Stage,一个ResultStage,两个ShuffleMapStage,一个ShuffleMapStage中的RDD是RDD1,另一个stage中的RDD是RDD6,从而,以上完成了RDD到Stage的切分工作。当切分完成后在handleJobSubmitted这个方法的最后,调用提交stage的方法。

3)DAGScheduler之对Stage进行调度、容错

 

4)DAGScheduler之实例销毁

 

参考:

1)《Spark运行机制之DAG原理

2)《Spark Scheduler模块详解-DAGScheduler实现

3)《spark源码走读之DAGScheduler

4)《Spark Scheduler模块源码分析之DAGScheduler

5)《Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

6)《spark DAGScheduler、TaskSchedule、Executor执行task源码分析

 

转载于:https://www.cnblogs.com/yy3b2007com/p/11094617.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/303915
推荐阅读
相关标签
  

闽ICP备14008679号