赞
踩
PCA中降维的使用方法:
转载至:https://www.cnblogs.com/roygood/articles/10404472.html
函数原型及参数说明
这里只挑几个比较重要的参数进行说明。
sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
n_components: int, float, None 或 string,PCA算法中所要保留的主成分个数,也即保留下来的特征个数,如果 n_components = 1,将把原始数据降到一维;如果赋值为string,如n_components=‘mle’,将自动选取特征个数,使得满足所要求的方差百分比;如果没有赋值,默认为None,特征个数不会改变(特征数据本身会改变)。
copy:True 或False,默认为True,即是否需要将原始训练数据复制。
whiten:True 或False,默认为False,即是否白化,使得每个特征具有相同的方差。
PCA对象的属性
explained_variance_ratio_:返回所保留各个特征的方差百分比,如果n_components没有赋值,则所有特征都会返回一个数值且解释方差之和等于1。
n_components_:返回所保留的特征个数。
3.PCA常用方法
fit(X): 用数据X来训练PCA模型。
fit_transform(X):用X来训练PCA模型,同时返回降维后的数据。
inverse_transform(newData) :将降维后的数据转换成原始数据,但可能不会完全一样,会有些许差别。
transform(X):将数据X转换成降维后的数据,当模型训练好后,对于新输入的数据,也可以用transform方法来降维。
代码例子:
import numpy as np from sklearn.decomposition import PCA X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) pca = PCA(n_components=2) newX = pca.fit_transform(X) print(X) Out[365]: [[-1 -1] [-2 -1] [-3 -2] [ 1 1] [ 2 1] [ 3 2]] print(newX) Out[366]: array([[ 1.38340578, 0.2935787 ], [ 2.22189802, -0.25133484], [ 3.6053038 , 0.04224385], [-1.38340578, -0.2935787 ], [-2.22189802, 0.25133484], [-3.6053038 , -0.04224385]]) print(pca.explained_variance_ratio_) [ 0.99244289 0.00755711]
可以发现第一个特征可以99.24%表达整个数据集,因此我们可以降到1维:
pca = PCA(n_components=1)
newX = pca.fit_transform(X)
print(pca.explained_variance_ratio_)
[ 0.99244289]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。