当前位置:   article > 正文

Pytorch(二) —— 激活函数、损失函数及其梯度_pytorch 激活函数的梯度

pytorch 激活函数的梯度

1.激活函数

1.1 Sigmoid / Logistic

δ ( x ) = 1 1 + e − x δ ′ ( x ) = δ ( 1 − δ ) \delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta) δ(x)=1+ex1δ(x)=δ(1δ)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.sigmoid(x)
plt.plot(x,y)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

1.2 Tanh

t a n h ( x ) = e x − e − x e x + e − x ∂ t a n h ( x ) ∂ x = 1 − t a n h 2 ( x ) tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\\\frac{\partial tanh(x)}{\partial x}=1-tanh^2(x) tanh(x)=ex+exexexxtanh(x)=1tanh2(x)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.tanh(x)
plt.plot(x,y)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

1.3 ReLU

f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.relu(x)
plt.plot(x,y)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

1.4 Softmax

p i = e a i ∑ k = 1 N e a k ∂ p i ∂ a j = { p i ( 1 − p j ) i = j − p i p j i ≠ j p_i=\frac{e^{a_i}}{\sum_{k=1}^N{e^{a_k}}}\\ \frac{\partial p_i}{\partial a_j}=\left\{

pi(1pj)i=jpipjij
\right. pi=k=1Neakeaiajpi={pi(1pj)pipji=ji=j

import torch.nn.functional as F
logits = torch.rand(10)
prob = F.softmax(logits,dim=0)
print(prob)
  • 1
  • 2
  • 3
  • 4
tensor([0.1024, 0.0617, 0.1133, 0.1544, 0.1184, 0.0735, 0.0590, 0.1036, 0.0861,
        0.1275])
  • 1
  • 2

2.损失函数

2.1 MSE

import torch.nn.functional as F
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
mse = F.mse_loss(y,x@w)
print(mse)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
tensor(238.5115)
  • 1

2.2 CorssEntorpy

import torch.nn.functional as F
x = torch.rand(100,64)
w = torch.rand(64,10)
y = torch.randint(0,9,[100])
entropy = F.cross_entropy(x@w,y)
print(entropy)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
tensor(3.6413)
  • 1

3. 求导和反向传播

3.1 求导

  • Tensor.requires_grad_()
  • torch.autograd.grad()
import torch.nn.functional as F
import torch
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
w.requires_grad_()
mse = F.mse_loss(x@w,y)
grads = torch.autograd.grad(mse,[w])
print(grads[0].shape)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
torch.Size([64, 1])
  • 1

3.2 反向传播

  • Tensor.backward()
import torch.nn.functional as F
import torch
x = torch.rand(100,64)
w = torch.rand(64,10)
w.requires_grad_()
y = torch.randint(0,9,[100,])
entropy = F.cross_entropy(x@w,y)
entropy.backward()
w.grad.shape
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
torch.Size([64, 10])
  • 1

by CyrusMay 2022 06 28

人生 只是 须臾的刹那
人间 只是 天地的夹缝
——————五月天(因为你 所以我)——————

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/314481
推荐阅读
相关标签
  

闽ICP备14008679号