赞
踩
为什么要使用mel特征提取?
因为音频数据如果直接拿来做自动语音识别会效果非常差,由于音频存在很多噪音,并且音频中我们需要的有效数据并没有被凸显出来,而使用mel特征提取可以将音频数据里有效信息进行提取、无用信息进行过滤,其原理是模拟人耳构造,对音频进行滤波,处理过后的数据再用来做自动语音识别效果会有显著提升。
librosa
库:
librosa.filters.mel
:https://librosa.github.io/librosa/generated/librosa.filters.mel.html
librosa.core.pcen
:https://librosa.github.io/librosa/generated/librosa.core.pcen.html
pcen论文《Trainable Frontend For Robust and Far-Field Keyword Spotting》:https://arxiv.org/pdf/1607.05666.pdf
Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient)的缩写是MFCC,是一种在自动语音和说话人识别中广泛使用的特征。
Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。
用录音设备录制一段模拟语音信号后,经由自定的取样频率(如8000 Hz、16000 Hz等)采样后转换(A/D)为数字语音信号。由于在时域(time domain)上语音信号的波形变化相当快速、不易观察,因此一般都会在频域(frequency domain)上来观察,其频谱是随着时间而缓慢变化的,因此通常可以假设在一较短时间中,其语音信号的特性是稳定的,通常我们定义这个较短时间为一帧(frame),根据人的语音的音调周期值的变化,一般取10~20ms。
关于概念,请查阅:https://www.e-learn.cn/content/qita/798278
开始前还请熟悉运算流程:https://blog.csdn.net/zouxy09/article/details/9156785
关于教程,请查阅:http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
任何自动语音识别系统的第一步是提取特征,即识别音频信号的组成部分,这些组成部分有助于识别语言内容并丢弃所有其他携带诸如背景噪声,情绪等信息的东西。
理解语音的要点是人类产生的声音被声道的形状过滤,包括舌头,牙齿等。这种形状决定了声音的出现。如果我们能够准确地确定形状,这应该能够准确地表示正在生产的音素。声道的形状表现在短时功率谱的包络中,MFCC的工作是准确地表示这个包络。本页面将提供有关MFCC的简短教程。
Mel频率倒谱系数(MFCC)是一种广泛用于自动语音和说话人识别的功能。它们是戴维斯和梅尔斯坦在20世纪80年代引入的,从那以后一直是最先进的。在引入MFCC之前,线性预测系数(LPC)和线性预测倒谱系数(LPCC)(点击此处获取关于倒谱和LPCC的教程)并且是自动语音识别(ASR)的主要特征类型,特别是对于HMM分类器。本页将介绍MFCC的主要方面,为什么它们为ASR提供了一个很好的功能,以及如何实现它们。
我们将对实施步骤进行高级介绍,然后深入探讨为什么我们要做的事情。接下来,我们将详细介绍如何计算MFCC。
基于:Ubuntu 16.04LTS,Core-i7 8700,PyCharm
对于一个2秒22050采样率的文件:
基于librosa:
# sr = 22050 # Sample rate. sr = 16000 # 16000 # keda, thchs30, aishell n_fft = 2048 # fft points (samples) frame_shift = 0.05 # seconds frame_length = 0.1 # seconds hop_length = int(sr * frame_shift) # samples. win_length = int(sr * frame_length) # samples. n_mels = 80 # Number of Mel banks to generate power = 1.2 # Exponent for amplifying the predicted magnitude n_iter = 50 # Number of inversion iterations preemphasis = .97 # or None max_db = 100 ref_db = 20 # log-mel特征提取 def get_spectrograms(fpath, use_path=True): '''Returns normalized log(melspectrogram) and log(magnitude) from `sound_file`. Args: sound_file: A string. The full path of a sound file. Returns: mel: A 2d array of shape (T, n_mels) <- Transposed mag: A 2d array of shape (T, 1+n_fft/2) <- Transposed ''' # Loading sound file if use_path: y, sr = librosa.load(fpath, sr=hp.sr) # with open("x.bin", 'wb') as fp: # for i in range(len(y)): # print("y[", i, "]: ", y[i]) # bs = struct.pack("f", y[i]) # # a = struct.pack('B', i) # fp.write(bs) else: y, sr = fpath, hp.sr print("y.shape: ", y.shape) print("sr: ", sr) time1 = time.time() # Trimming # y, _ = librosa.effects.trim(y) # Preemphasis pre-emphasis,预加重 y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1]) # stftz linear = librosa.stft(y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length) # magnitude spectrogram mag = np.abs(linear) # (1+n_fft//2, T) # mel spectrogram mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) # (n_mels, 1+n_fft//2) mel = np.dot(mel_basis, mag) # (n_mels, t) # to decibel mel = 20 * np.log10(np.maximum(1e-5, mel)) mag = 20 * np.log10(np.maximum(1e-5, mag)) # normalize mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) # Transpose mel = mel.T.astype(np.float32) # (T, n_mels) mag = mag.T.astype(np.float32) # (T, 1+n_fft//2) # mel = mel[:len(mel) // hp.r * hp.r].reshape([len(mel) // hp.r, hp.r * hp.n_mels]) mag = mag[:len(mag) // hp.r * hp.r] # .reshape([len(mag)//hp.r,hp.r*1025]) time2 = time.time() print("cost time:", time2-time1) return mel, mag # pcen-mel特征提取 def get_pcen(fpath, use_path=True): # Loading sound file if use_path: y, sr = librosa.load(fpath, sr=hp.sr) else: y, sr = fpath, hp.sr S = librosa.feature.melspectrogram(y, sr=sr, power=1, n_fft=hp.n_fft, hop_length=hp.hop_length, n_mels=hp.n_mels) pcen_S = librosa.pcen(S).T log_S = librosa.amplitude_to_db(S, ref=np.max) return pcen_S # ,log_S
可编译运行我的程序,已上传Github:https://github.com/tosonw/MFCC
1.基于该博客程序进行修改:https://blog.csdn.net/LiuPeiP_VIPL/article/details/81742392
2.根据Python平台librosa库的运算逻辑进行移植
3.使用NumCpp来实现Python平台的NumPy:https://github.com/dpilger26/NumCpp
4.本例中的FFT运算非常慢(约160ms),后来使用的是GitHub上找到的(约6ms): https://github.com/HiFi-LoFi/AudioFFT
5.后来经过验证发现NumCpp效率比较低,于是使用opencv来实现矩阵运算。
6.后来优化使用pcen来实现mel特征提取,其中使用了IIR滤波器:https://blog.csdn.net/liyuanbhu/article/details/38849897
基于:Ubuntu 16.04LTS,Core-i7 8700,Clion
对于一个2秒22050采样率的文件(不考虑文件加载):
以下是实现的代码:mfcc.hpp
// // Created by toson on 19-7-17. // // 1.基于该博客程序进行修改:https://blog.csdn.net/LiuPeiP_VIPL/article/details/81742392 // 2.根据Python平台librosa库的运算逻辑进行移植 // 3.使用NumCpp来实现Python平台的NumPy:https://github.com/dpilger26/NumCpp // 4.本例中的FFT运算非常慢(约160ms),后来使用的是GitHub上找到的(约6ms): https://github.com/HiFi-LoFi/AudioFFT // 5.后来经过验证发现NumCpp效率比较低,于是使用opencv来实现矩阵运算。 // 6.后来优化使用pcen来实现mel特征提取,其中使用了IIR滤波器:https://blog.csdn.net/liyuanbhu/article/details/38849897 // #pragma once #include "utils/AudioFFT.hpp" #include "opencv2/opencv.hpp" #include "iir_filter.hpp" #include "sas_util.h" int nSamplesPerSec = 16000; //采样率(每秒样本数) //Sample rate.(keda, thchs30, aishell) int length_DFT = 2048; //傅里叶点数 //fft points (samples) int hop_length = int(0.05 * nSamplesPerSec); //步长 //下一帧取数据相对于这一帧的右偏移量 int win_length = int(0.1 * nSamplesPerSec); //帧长 //假设16000采样率,则取取0.1s时间的数据 int number_filterbanks = 80; //过滤器数量 //Number of Mel banks to generate float preemphasis = 0.97; //预加重(高通滤波器比例值) int max_db = 100; int ref_db = 20; int r = 1; //librosa里的r=1,暂未深入分析其作用 double pi = 3.14159265358979323846; cv::Mat_<double> mel_basis; cv::Mat_<float> hannWindow; std::shared_ptr<IIR_I> filter; //"""Convert Hz to Mels""" double hz_to_mel(double frequencies, bool htk = false) { if (htk) { return 2595.0 * log10(1.0 + frequencies / 700.0); } // Fill in the linear part double f_min = 0.0; double f_sp = 200.0 / 3; double mels = (frequencies - f_min) / f_sp; // Fill in the log-scale part double min_log_hz = 1000.0; // beginning of log region (Hz) double min_log_mel = (min_log_hz - f_min) / f_sp; // same (Mels) double logstep = log(6.4) / 27.0; // step size for log region // 对照Python平台的librosa库,移植 //如果是多维数列 // if (frequencies.ndim) { // // If we have array data, vectorize // log_t = (frequencies >= min_log_hz) // mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep // } else if (frequencies >= min_log_hz) { // If we have scalar data, heck directly mels = min_log_mel + log(frequencies / min_log_hz) / logstep; } return mels; } //"""Convert mel bin numbers to frequencies""" cv::Mat_<double> mel_to_hz(cv::Mat_<double> mels, bool htk = false) { // if (htk) { // return //python://700.0 * (10.0**(mels / 2595.0) - 1.0); // } // Fill in the linear scale double f_min = 0.0; double f_sp = 200.0 / 3; cv::Mat_<double> freqs = mels * f_sp + f_min; // And now the nonlinear scale double min_log_hz = 1000.0; // beginning of log region (Hz) double min_log_mel = (min_log_hz - f_min) / f_sp; // same (Mels) double logstep = log(6.4) / 27.0; // step size for log region // 对照Python平台的librosa库,移植 //if (mels.ndim) { // If we have vector data, vectorize cv::Mat_<bool> log_t = (mels >= min_log_mel); for (int i = 0; i < log_t.cols; i++) { if (log_t(0, i)) { freqs(0, i) = cv::exp((mels(0, i) - min_log_mel) * logstep) * min_log_hz; } } //} return freqs; } // 生成等差数列,类似np.linspace cv::Mat_<double> cvlinspace(double min_, double max_, int length) { auto cvmat = cv::Mat_<double>(1, length); for (int i = 0; i < length; i++) { cvmat(0, i) = ((max_ - min_) / (length - 1) * i) + min_; } return cvmat; } //"""Create a Filterbank matrix to combine FFT bins into Mel-frequency bins""" cv::Mat_<double> mel_spectrogram_create(int nps, int n_fft, int n_mels) { double f_max = nps / 2.0; double f_min = 0; int n_fft_2 = 1 + n_fft / 2; // Initialize the weights //auto weights = nc::zeros<double>(nc::uint32(n_mels), nc::uint32(n_fft_2)); auto weights = cv::Mat_<double>(n_mels, n_fft_2, 0.0); // Center freqs of each FFT bin //auto fftfreqs_ = nc::linspace<double>(f_min, f_max, nc::uint32(n_fft_2), true); auto fftfreqs = cvlinspace(f_min, f_max, n_fft_2); // 'Center freqs' of mel bands - uniformly spaced between limits double min_mel = hz_to_mel(f_min, false); double max_mel = hz_to_mel(f_max, false); //auto mels_ = nc::linspace(min_mel, max_mel, nc::uint32(n_mels + 2)); auto mels = cvlinspace(min_mel, max_mel, n_mels + 2); auto mel_f = mel_to_hz(mels, false); //auto fdiff_ = nc::diff(mel_f_); //沿着指定轴计算第N维的离散差值(后一个元素减去前一个元素) cv::Mat_<double> d1(1, mel_f.cols * mel_f.rows - 1, (double *) (mel_f.data) + 1); cv::Mat_<double> d2(1, mel_f.cols * mel_f.rows - 1, (double *) (mel_f.data)); cv::Mat_<double> fdiff = d1 - d2; //auto ramps = nc::subtract.outer(mel_f, fftfreqs); //nc没有subtract.outer //nc::NdArray<double> ramps = nc::zeros<double>(mel_f.cols, fftfreqs.cols); auto ramps = cv::Mat_<double>(mel_f.cols, fftfreqs.cols); for (int i = 0; i < mel_f.cols; i++) { for (int j = 0; j < fftfreqs.cols; j++) { ramps(i, j) = mel_f(0, i) - fftfreqs(0, j); } } for (int i = 0; i < n_mels; i++) { // lower and upper slopes for all bins //auto ramps_1 = nc::NdArray<double>(1, ramps.cols); auto ramps_1 = cv::Mat_<double>(1, ramps.cols); for (int j = 0; j < ramps.cols; j++) { ramps_1(0, j) = ramps(i, j); } //auto ramps_2 = nc::NdArray<double>(1, ramps.cols); auto ramps_2 = cv::Mat_<double>(1, ramps.cols); for (int j = 0; j < ramps.cols; j++) { ramps_2(0, j) = ramps(i + 2, j); } cv::Mat_<double> lower = ramps_1 * -1 / fdiff(0, i); cv::Mat_<double> upper = ramps_2 / fdiff(0, i + 1); // .. then intersect them with each other and zero //auto weights_1 = nc::maximum(nc::zeros<double>(1, ramps.cols), nc::minimum(lower, upper)); cv::Mat c1 = lower;//(cv::Mat_<double>(1,5) << 1,2,-3,4,-5); cv::Mat c2 = upper; cv::Mat weights_1 = cv::Mat_<double>(1, lower.cols); cv::min(c1, c2, weights_1); cv::max(weights_1, 0, weights_1); for (int j = 0; j < n_fft_2; j++) { weights(i, j) = weights_1.at<double_t>(0, j); } } // Slaney-style mel is scaled to be approx constant energy per channel auto enorm = cv::Mat_<double>(1, n_mels); for (int j = 0; j < n_mels; j++) { enorm(0, j) = 2.0 / (mel_f(0, j + 2) - mel_f(0, j)); } for (int j = 0; j < n_mels; j++) { for (int k = 0; k < n_fft_2; k++) { weights(j, k) *= enorm(0, j); } } return weights; } //"""Short-time Fourier transform (STFT)""": 默认center=True, window='hann', pad_mode='reflect' cv::Mat_<double> MagnitudeSpectrogram(const cv::Mat_<float> *emphasis_data, int n_fft = 2048, int hop_length = 0, int win_length = 0) { if (win_length == 0) { win_length = n_fft; } if (hop_length == 0) { hop_length = win_length / 4; } // reflect对称填充 int pad_lenght = n_fft / 2; // 使用opencv里的copyMakeBorder来完成reflect填充 cv::Mat_<float> cv_padbuffer; cv::copyMakeBorder(*emphasis_data, cv_padbuffer, 0, 0, pad_lenght, pad_lenght, cv::BORDER_REFLECT_101); // windowing加窗:将每一帧乘以汉宁窗,以增加帧左端和右端的连续性。 // 生成一个1600长度的hannWindow,并居中到2048长度的 if (hannWindow.empty()) { hannWindow = cv::Mat_<float>(1, n_fft, 0.0f); int insert_cnt = 0; if (n_fft > win_length) { insert_cnt = (n_fft - win_length) / 2; } else { std::cout << "\tn_fft:" << n_fft << " > win_length:" << n_fft << std::endl; return cv::Mat_<double>(0); } for (int k = 1; k <= win_length; k++) { hannWindow(0, k - 1 + insert_cnt) = float(0.5 * (1 - cos(2 * pi * k / (win_length + 1)))); } } // opencv虽然有Hann窗生成函数,但是必须要求width > 1,height > 1 //cv::Mat_<double> cv_hannWindow; //cv::createHanningWindow(cv_hannWindow, cv::Size(1, win_length), CV_64FC1); int size = cv_padbuffer.rows * cv_padbuffer.cols;//padbuffer.size() int number_feature_vectors = (size - n_fft) / hop_length + 1; int number_coefficients = n_fft / 2 + 1; cv::Mat_<float> feature_vector(number_feature_vectors, number_coefficients, 0.0f); audiofft::AudioFFT fft; //将FFT初始化放在循环外,可达到最优速度 fft.init(size_t(n_fft)); for (int i = 0; i <= size - n_fft; i += hop_length) { // 每次取一段数据 cv::Mat_<float> framef = cv::Mat_<float>(1, n_fft, (float *) (cv_padbuffer.data) + i).clone(); // 加hann窗 framef = framef.mul(hannWindow); // 复数:Xrf实数,Xif虚数。 cv::Mat_<float> Xrf(1, number_coefficients); cv::Mat_<float> Xif(1, number_coefficients); fft.fft((float *) (framef.data), (float *) (Xrf.data), (float *) (Xif.data)); // 求模 cv::pow(Xrf, 2, Xrf); cv::pow(Xif, 2, Xif); cv::Mat_<float> cv_feature(1, number_coefficients, &(feature_vector[i / hop_length][0])); cv::sqrt(Xrf + Xif, cv_feature); } cv::Mat_<float> cv_mag; cv::transpose(feature_vector, cv_mag); cv::Mat_<double> mag; cv_mag.convertTo(mag, CV_64FC1); return mag; } /********************************************* * 名称:log_mel * 功能:传入音频数据,输出log-mel方式提取的特征数据。 * 参数:@ifile_data 传入的音频数据 * @nSamples_per_sec 音频采样率 * 返回:cv::Mat_<double> 特征数据 *********************************************/ cv::Mat_<double> log_mel(std::vector<char> &ifile_data, int nSamples_per_sec) { if (nSamples_per_sec != nSamplesPerSec) { std::cout << R"(the "nSamples_per_sec" is not 16000.)" << std::endl; return cv::Mat_<double>(nullptr); } int ifile_length = int(ifile_data.size() / 4); // pre-emphasis 预加重 //高通滤波 cv::Mat_<float> d1(1, ifile_length - 1, (float *) (ifile_data.data()) + 1); cv::Mat_<float> d2(1, ifile_length - 1, (float *) (ifile_data.data())); cv::Mat_<float> cv_emphasis_data; cv::hconcat(cv::Mat_<float>::zeros(1, 1), d1 - d2 * preemphasis, cv_emphasis_data); // magnitude spectrogram 幅度谱图 auto mag = MagnitudeSpectrogram(&cv_emphasis_data, length_DFT, hop_length, win_length); mag = cv::abs(mag); // 生成梅尔谱图 mel spectrogram //3ms if (mel_basis.empty()) { mel_basis = mel_spectrogram_create(nSamplesPerSec, length_DFT, number_filterbanks); } // doc cv::Mat cv_mel = mel_basis * mag; // to decibel //mel = 20 * np.log10(np.maximum(1e-5, mel)) //mag = 20 * np.log10(np.maximum(1e-5, mag)) //由于后续没用用到mag了,所以不再对mag做运算。 // 使用opencv来实现 cv::log(cv::max(cv_mel, 1e-5), cv_mel); // opencv没有log10(),所以使用log(x)/log(10)来运算。 cv_mel = cv_mel / 2.3025850929940459 * 20; // 2.3025850929940459=log(10) // normalize //mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) //mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) //cv::normalize(cv_mel, cv_mel, 1e-8, 1.0, cv::NORM_MINMAX); // cv::normalize无法实现 cv_mel = (cv_mel - ref_db + max_db) / max_db; cv_mel = cv::max(cv::min(cv_mel, 1.0), 1e-8); // Transpose //mel = mel.T.astype(np.float32) //mag = mag.T.astype(np.float32) // 使用opencv的transpose cv::Mat cv_mel_r; cv::transpose(cv_mel, cv_mel_r); cv_mel_r.convertTo(cv_mel_r, CV_32FC1); if (r == 1) { // 原计算公式是: // mel = mel[:len(mel) // hp.r * hp.r].reshape([len(mel) // hp.r, hp.r * hp.n_mels]) // 当r=1的时候公式运算无任何数值改变。 } else { std::cout << R"(the "r" is not 1.)" << std::endl; } // 返回mel特征向量 return cv_mel_r; } /**--------------------------------- 以下是pcen运算方法 ---------------------------------**/ // scipy.signal.lfilter_zi() cv::Mat_<double> cvlfilter_zi(cv::Mat_<double> b, cv::Mat_<double> a) { if ((b.rows != 1) || (a.rows != 1)) { std::cout << "Numerator b and Denominator a must be 1-D." << std::endl; } if (a(0, 0) != 1) { // Normalize the coefficients so a[0] == 1. b = b / a(0, 0); a = a / a(0, 0); } int len_a = a.cols * a.rows; int len_b = b.cols * b.rows; int n = len_a > len_b ? len_a : len_b; if (len_a < n) { cv::hconcat(a, cv::Mat_<float>::zeros(1, n - len_a), a); } else if (len_b < n) { cv::hconcat(b, cv::Mat_<float>::zeros(1, n - len_b), b); } return cv::Mat_<double>(nullptr); } // scipy.signal.lfilter() // Filter data along one-dimension with an IIR or FIR filter. cv::Mat_<double> cvlfilter(cv::Mat_<double> &b, cv::Mat_<double> &a, cv::Mat_<double> &x, cv::Mat_<double> &zi, int axis = -1) { if (a.rows * a.cols == 1) { // This path only supports types fdgFDGO to mirror _linear_filter below. // Any of b, a, x, or zi can set the dtype, but there is no default // casting of other types; instead a NotImplementedError is raised. // TODO: 后续如果需要,则进行补充 } else { // return sigtools._linear_filter(b, a, x, axis, zi) // sigtools._linear_filter() // (y,Vf) = _linear_filter(b,a,X,Dim=-1,Vi=None) implemented using Direct Form II transposed flow diagram. // If Vi is not given, Vf is not returned. ; } } /********************************************* * 名称:pcen * 功能:传入音频数据,输出pcen方式提取的特征数据。 * 参数:@ifile_data 传入的音频数据 * @nSamples_per_sec 音频采样率 * 返回:cv::Mat_<double> 特征数据 *********************************************/ cv::Mat_<double> pcen(std::vector<char> &ifile_data, int nSamples_per_sec) { if (nSamples_per_sec != nSamplesPerSec) { std::cout << R"(the "nSamples_per_sec" is not 16000.)" << std::endl; return cv::Mat_<double>(nullptr); } int ifile_length = int(ifile_data.size() / 4); cv::Mat_<float> cv_emphasis_data(1, ifile_length, (float *) (ifile_data.data())); // magnitude spectrogram 幅度谱图 auto mag = MagnitudeSpectrogram(&cv_emphasis_data, length_DFT, hop_length, win_length); mag = cv::abs(mag); // 生成梅尔谱图 mel spectrogram //3ms if (mel_basis.empty()) { mel_basis = mel_spectrogram_create(nSamplesPerSec, length_DFT, number_filterbanks); } // doc cv::Mat_<double> mel = mel_basis * mag; // 计算pcen特征 // double time_constant = 0.400; // int sr = 22050; // int hop_length = 512; // double t_frames = time_constant * sr / double(hop_length); // double b = (sqrt(1 + 4 * t_frames * t_frames) - 1) / (2 * t_frames * t_frames); // cv::Mat_<double> zi = (cv::Mat_<double>(1, 1) << 0.94361056); // // cv::Mat_<double> in_b = (cv::Mat_<double>(1, 1) << b); // cv::Mat_<double> in_a = (cv::Mat_<double>(1, 2) << 1, b - 1); // cv::Mat_<double> zi = cvlfilter_zi(in_b, in_a); // 第二个公式计算 // cv::Mat_<double> S_smooth = cvlfilter(in_b, in_a, mel, zi); #if 1 // IIR滤波器 if (!filter) { filter = std::make_shared<IIR_I>(); double iir_b[1] = {0.05638943879134889}; double iir_a[2] = {1.0, -0.9436105612086512}; //filter.reset(); filter->setPara(iir_b, 1, iir_a, 2); } cv::Mat_<double> S_smooth = cv::Mat_<double>(mel.rows, mel.cols); for (int i = 0; i < mel.rows; i++) { filter->filter(mel[i], S_smooth[i], mel.cols); } #endif // 第一个公式计算 double gain = 0.98; double bias = 2.0; double power = 0.5; double eps = 1e-6; //python: smooth = np.exp(-gain * (np.log(eps) + np.log1p(S_smooth / eps))) cv::Mat_<double> S_smooth_log1p; cv::log(S_smooth / eps + 1, S_smooth_log1p); cv::Mat_<double> smooth; cv::exp((S_smooth_log1p + cv::log(eps)) * (-gain), smooth); //python: S_out = (bias ** power) * np.expm1(power * np.log1p(ref * smooth / bias)) cv::Mat_<double> smooth_log1p; cv::Mat_<double> smooth_log1p_exp; cv::log(mel.mul(smooth) / bias + 1, smooth_log1p); cv::exp(power * smooth_log1p, smooth_log1p_exp); cv::Mat_<double> S_out = (smooth_log1p_exp - 1) * pow(bias, power); // transpose cv::Mat_<double> pcen; cv::transpose(S_out, pcen); return pcen; }
这个是上述程序中提到的音频采样率转换代码:音频48kHz采样率转换为16kHz,并仅保存数据部分,保存为二进制文件。
import os.path import sys import librosa import numpy as np import struct def find_files(path): ''' 把path目录下的文件名全部获取,保存在files中 :param path: :return: ''' return os.listdir(path) def audio48kHz_to_bin16kHz_and_save(files, in_path, out_path): ''' 音频48kHz采样率转换为16kHz,并仅保存数据部分,保存为二进制文件。 :param files: :param out_path: :return: ''' for file in files: in_file = in_path + "/" + file y, sr = librosa.load(in_file, 16000) # keda, thchs30, aishell out_file = out_path + "/" + file + ".bin" with open(out_file, 'wb') as fp: for i in range(len(y)): # print("y[", i, "]: ", y[i]) bs = struct.pack("f", y[i]) # a = struct.pack('B', i) fp.write(bs) print(out_file) if __name__ == '__main__': print("Example: $ python 48k_to_16k.py /home/toson/Downloads/sounds /home/toson/Downloads/sounds_out") print(sys.argv[0]) # sys.argv[0] 类似于shell中的$0,但不是脚本名称,而是脚本的路径 print(sys.argv[1]) # sys.argv[1] 表示传入的第一个参数,既 hello print(sys.argv[2]) # sys.argv[1] = '/home/toson/Downloads/sounds' # sys.argv[2] = '/home/toson/Downloads/sounds_out' # path = '/d/images/' files = find_files(sys.argv[1]) audio48kHz_to_bin16kHz_and_save(files, sys.argv[1], sys.argv[2]) print("end.")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。