赞
踩
C题:The Development Trend of New Energy Electric Vehicles in China中国谈新能源电动汽车的发展趋势
第一问部分:
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- from sklearn.cluster import KMeans
- from sklearn.preprocessing import StandardScaler
- import seaborn as sns
- from statsmodels.tsa.arima.model import ARIMA
- from sklearn.preprocessing import StandardScaler
- import matplotlib
-
- # 使用Times New Roman字体
- matplotlib.rcParams['font.family'] = 'Times New Roman'
-
- # 绘制折线图
- plt.plot(pd_power['磷酸铁锂动力电池装机量/GWh'], label='Lithium',marker='o')
- plt.plot(pd_power['三元电池装机量/GWh'], label='SanYuan',marker='o')
-
- # 添加图例
- plt.legend(loc='upper left')
-
- # 设置x轴标签和标题
- plt.xlabel('Year')
- plt.title('Installed capacity/GWh')
-
- plt.xticks([0,1,2,3,4,5,6],pd_power['年份'])
-
- # 显示图表
- plt.tight_layout()
- plt.show()
- import matplotlib
-
- # 使用Times New Roman字体
- matplotlib.rcParams['font.family'] = 'Times New Roman'
-
- # 绘制折线图
- plt.plot(year_sale_list[::-1], label='NEEV',marker='o')
-
- # 添加图例
- plt.legend(loc='upper left')
-
- # 设置x轴标签和标题
- plt.xlabel('time')
- plt.title('Sales')
-
- plt.xticks([0,1,2,3,4,5,6,7,8],['2015','2016','2017','2018','2019','2020','2021','2022','2023'])
-
- # 显示图表
- plt.tight_layout()
- plt.show()
相关性分析如下:
- dir = {'sale':year_sale_list[5:1:-1],
- 'subsidy':df_subsidy.iloc[:,2:].sum().values}
- dir1 = {
- 'sale':year_sale_list[6::-1],
- 'power':pd_power['磷酸铁锂动力电池装机量/GWh'].values
- }
- df_corr = pd.DataFrame(dir)
- df_cor = pd.DataFrame(dir1)
- df_cor
-
- df_sale = pd.DataFrame(year_sale_list)
-
- # 计算补贴金额与销售量的相关性
- correlation_subsidy = df_corr['sale'].corr(df_corr['subsidy'])
- correlation_power = df_cor['sale'].corr(df_cor['power'])
- # correlation_tech = df_sale['新能源汽车产销量'].corr(df_tech['每个项目资金支持(万元)'])
-
- # 输出相关性结果
- correlation_subsidy, correlation_power
后续代码、讲解视频、论文及其他相关内容,可以点击下面的群名片哦!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。