赞
踩
基于 UDP 协议实现的可靠传输协议的成熟方案了,那就是 QUIC 协议,已经应用在了 HTTP/3。
QUIC是如何实现可靠传输的
基于 UDP 协议实现的可靠传输协议的成熟方案了,那就是 QUIC 协议,已经应用在了 HTTP/3。
Packet header
Packet Header 首次建立连接时和日常传输数据时使用的 Header 是不同的
QUIC 也是需要三次握手来建立连接的,主要目的是为了协商连接 ID。协商出连接 ID 后,后续传输时,双方只需要固定住连接 ID,从而实现连接迁移功能。
Short Packet Header 中的 Packet Number
是每个报文独一无二的编号,它是严格递增的,也就是说就算 Packet N 丢失了,重传的 Packet N 的 Packet Number 已经不是 N,而是一个比 N 大的值。
为什么要这么设计呢?
QUIC 报文中的 Pakcet Number 是严格递增的, 即使是重传报文,它的 Pakcet Number 也是递增的,这样就能更加精确计算出报文的 RTT。
还有一个好处,QUIC 使用的 Packet Number 单调递增的设计,可以让数据包不再像 TCP 那样必须有序确认,QUIC 支持乱序确认,当数据包Packet N 丢失后,只要有新的已接收数据包确认,当前窗口就会继续向右滑动
QUIC Frame Header
一个 Packet 报文中可以存放多个 QUIC Frame。
每一个 Frame 都有明确的类型,针对类型的不同,功能也不同,自然格式也不同。
引入 Frame Header 这一层,通过 Stream ID + Offset 字段信息实现数据的有序性,通过比较两个数据包的 Stream ID 与 Stream Offset ,如果都是一致,就说明这两个数据包的内容一致。
QUIC 通过单向递增的 Packet Number,配合 Stream ID 与 Offset 字段信息,可以支持乱序确认而不影响数据包的正确组装
QUIC是如何解决TCP的队头阻塞问题的
没有队头阻塞的QUIC
在一条 QUIC 连接上可以并发发送多个 HTTP 请求 (Stream)。
QUIC 给每一个 Stream 都分配了一个独立的滑动窗口,这样使得一个连接上的多个 Stream 之间没有依赖关系,都是相互独立的,各自控制的滑动窗口。
假如 Stream2 丢了一个 UDP 包,也只会影响 Stream2 的处理,不会影响其他 Stream,与 HTTP/2 不同,HTTP/2 只要某个流中的数据包丢失了,其他流也会因此受影响。
QUIC是如何做流量控制的
QUIC 实现流量控制的方式:
通过 window_update 帧告诉对端自己可以接收的字节数,这样发送方就不会发送超过这个数量的数据。
通过 BlockFrame 告诉对端由于流量控制被阻塞了,无法发送数据。
QUIC 是基于 UDP 传输的,而 UDP 没有流量控制,因此 QUIC 实现了自己的流量控制机制,QUIC 的滑动窗口滑动的条件跟 TCP 有一点差别,但是同一个 Stream 的数据也是要保证顺序的,不然无法实现可靠传输,因此同一个 Stream 的数据包丢失了,也会造成窗口无法滑动。
QUIC 的 每个 Stream 都有各自的滑动窗口,不同 Stream 互相独立,队头的 Stream A 被阻塞后,不妨碍 StreamB、C的读取。
QUIC 实现了两种级别的流量控制,分别为 Stream 和 Connection 两种级别:
Stream 级别的流量控制:Stream 可以认为就是一条 HTTP 请求,每个 Stream 都有独立的滑动窗口,所以每个 Stream 都可以做流量控制,防止单个 Stream 消耗连接(Connection)的全部接收缓冲。
Connection 流量控制:限制连接中所有 Stream 相加起来的总字节数,防止发送方超过连接的缓冲容量。
Stream 级别的流量控制
接收窗口的左边界取决于接收到的最大偏移字节数,此时的接收窗口 = 最大窗口数 - 接收到的最大偏移数
。
看出 QUIC 的流量控制和 TCP 有点区别了:
TCP 的接收窗口只有在前面所有的 Segment 都接收的情况下才会移动左边界,当在前面还有字节未接收但收到后面字节的情况下,窗口也不会移动。
QUIC 的接收窗口的左边界滑动条件取决于接收到的最大偏移字节数。
Connection 流量控制
Connection 级别的流量窗口,其接收窗口大小就是各个 Stream 接收窗口大小之和
上图所示的例子,所有 Streams 的最大窗口数为 120,其中
Stream 1 的最大接收偏移为 100,可用窗口 = 120 - 100 = 20
Stream 2 的最大接收偏移为 90,可用窗口 = 120 - 90 = 30
Stream 3 的最大接收偏移为 110,可用窗口 = 120 - 110 = 10
那么整个 Connection 的可用窗口 = 20 + 30 + 10 = 60
可用窗口 = Stream 1 可用窗口 + Stream 2 可用窗口 + Stream 3 可用窗口
QUIC对拥塞控制改进
QUIC 是处于应用层的,应用程序层面就能实现不同的拥塞控制算法,不需要操作系统,不需要内核支持
QUIC 可以随浏览器更新,QUIC 的拥塞控制算法就可以有较快的迭代速度。
QUIC 处于应用层,所以就可以针对不同的应用设置不同的拥塞控制算法
QUIC更快的连接建立
QUIC 内部包含了 TLS,它在自己的帧会携带 TLS 里的“记录”,再加上 QUIC 使用的是 TLS1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与密钥协商,甚至在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果。
QUIC是如何迁移连接的
基于 TCP 传输协议的 HTTP 协议,由于是通过四元组(源 IP、源端口、目的 IP、目的端口)确定一条 TCP 连接。
当移动设备的网络从 4G 切换到 WIFI 时,意味着 IP 地址变化了,那么就必须要断开连接,然后重新建立 TCP 连接。
QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己,因此即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本,没有丝毫卡顿感,达到了连接迁移的功能。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。