赞
踩
声音分类是指可以定制识别出当前音频是哪种声音,或者是什么状态/场景的声音。通过声音,人的大脑会获取到大量的信息,其中的一个场景是:识别和归类。如:识别熟悉的亲人或朋友的声音、识别不同乐器发出的声音、识别不同环境产生的声音,等等。我们可以根据不同声音的特征(频率,音色等)进行区分,这种区分行为的本质,就是对声音进行分类。声音分类在实际生产生活中有着很广泛的应用场景,如对特定环境下的特定声音的甄别,从而判断出特定事件是否发生以及是否可能发生,以便可以驱动不同的应用完成一些复杂的业务逻辑处理,如预警预控、自动控制等等。所以对此加以研习很有必要。
音色: 声音是由发声的物体的振动产生的。当发声物体的主体振动时会发出一个基音,同时其余各部分也有复合的振动,这些振动组合产生泛音。正是这些泛音决定了发生物体的音色,使人能辨别出不同的乐器甚至不同的人发出的声音。所以根据音色的不同可以划分出男音和女音;高音、中音和低音;弦乐和管乐等。
声音分类根据用途还可以继续细分:
副语言识别:说话人识别(Speaker Recognition), 情绪识别(Speech Emotion Recognition),性别分类(Speaker gender classification)
音乐识别:音乐流派分类(Music Genre Classification)
场景识别:环境声音分类(Environmental Sound Classification)
声音事件检测:各个环境中的声音事件和起始时间的检测
本案例不涉及复杂的声音模型、语言模型,可作为零基础入门语音识别的一个导引,希望大家通过本案例的实践能体验到语音识别的乐趣。数据集来自Eating Sound Collection,数据集中包含20种不同食物的咀嚼声音,任务是给这些声音数据建模,准确分类。
PANNs(PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition)是基于Audioset数据集训练的声音分类/识别的模型。经过预训练后,模型可以用于提取音频的embbedding。本示例将使用PANNs的预训练模型Finetune完成声音分类的任务。
PaddleAudio提供了PANNs的CNN14、CNN10和CNN6的预训练模型,可供用户选择使用:
CNN14: 该模型主要包含12个卷积层和2个全连接层,模型参数的数量为 79.6M,embbedding维度是 2048。
CNN10: 该模型主要包含8个卷积层和2个全连接层,模型参数的数量为 4.9M,embbedding维度是 512。
CNN6: 该模型主要包含4个卷积层和2个全连接层,模型参数的数量为 4.5M,embbedding维度是 512。
使用paddlespeech,对声音数据建模,搭建一个声音分类网络,进行分类任务,完成一个食物咀嚼语音分类任务。
# 如果需要进行持久化安装, 需要使用持久化路径, 如下方代码示例:
# 如果需要进行持久化安装, 需要使用持久化路径, 如下方代码示例:
# If a persistence installation is required,
# you need to use the persistence path as the following:
!mkdir /home/aistudio/external-libraries
!pip install paddlespeech==1.2.0 -t /home/aistudio/external-libraries
!pip install paddleaudio==1.0.1 -t /home/aistudio/external-libraries
!pip install pydub -t /home/aistudio/external-libraries
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可:
# Also add the following code,
# so that every time the environment (kernel) starts,
# just run the following code:
import sys
sys.path.append('/home/aistudio/external-libraries')
数据集来自Eating Sound Collection,数据集中包含20种不同食物的咀嚼声音
%cd /home/aistudio/work
!wget http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531887/train_sample.zip
/home/aistudio/work
--2022-12-07 16:20:05-- http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531887/train.zip
正在解析主机 tianchi-competition.oss-cn-hangzhou.aliyuncs.com (tianchi-competition.oss-cn-hangzhou.aliyuncs.com)... 183.131.227.248
正在连接 tianchi-competition.oss-cn-hangzhou.aliyuncs.com (tianchi-competition.oss-cn-hangzhou.aliyuncs.com)|183.131.227.248|:80... 已连接。
已发出 HTTP 请求,正在等待回应... 200 OK
长度: 3793765027 (3.5G) [application/zip]
正在保存至: “train.zip.1”
train.zip.1 100%[===================>] 3.53G 3.66MB/s in 43m 14s
2022-12-07 17:03:20 (1.39 MB/s) - 已保存 “train.zip.1” [3793765027/3793765027])
!mkdir /home/aistudio/dataset
!unzip -oq /home/aistudio/work/train_sample.zip -d /home/aistudio/dataset
观察数据集文件夹格式,每一个文件夹分别代表每一类,文件均为 .wav 格式,所以接下来进行音频文件的加载和音频信号特征的提取
加载声音文件(.wav)的方式有很多
下面列举一下
librosa
PySoundFile
ffmpy
AudioSegment/pydub
paddleaudio
音频切分 auditok
本次项目采用paddleaudio库来加载wav文件
from paddleaudio.features import LogMelSpectrogram
from paddleaudio import load
import paddle
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
data, sr = load(file='/home/aistudio/dataset/train_sample/aloe/24EJ22XBZ5.wav', mono=True, dtype='float32')
print('wav shape: {}'.format(data.shape))
print('sample rate: {}'.format(sr))
# 展示音频波形
plt.figure()
plt.plot(data)
plt.show()
wav shape: (143322,)
sample rate: 44100
<Figure size 640x480 with 1 Axes>
接下来介绍一下两种音频特征提取的方法,短时傅里叶变换、LogFBank
对于一段音频,一般会将整段音频进行分帧,每一帧含有一定长度的信号数据,一般使用 25ms,帧与帧之间的移动距离称为帧移,一般使用 10ms,然后对每一帧的信号数据加窗后,进行离散傅立叶变换(DFT)得到频谱图。
通过按照上面的对一段音频进行分帧后,我们可以用傅里叶变换来分析每一帧信号的频率特性。将每一帧的频率信息拼接后,可以获得该音频不同时刻的频率特征——Spectrogram,也称作为语谱图。
下面例子采用 paddle.signal.stft
演示如何提取示例音频的频谱特征,并进行可视化:
import paddle import numpy as np from paddleaudio import load data, sr = load(file='/home/aistudio/dataset/train_sample/soup/BXT66GMTWP.wav', mono=True, dtype='float32') x = paddle.to_tensor(data) n_fft = 1024 win_length = 1024 hop_length = 320 # [D, T] spectrogram = paddle.signal.stft(x, n_fft=n_fft, win_length=win_length, hop_length=512, onesided=True) print('spectrogram.shape: {}'.format(spectrogram.shape)) print('spectrogram.dtype: {}'.format(spectrogram.dtype)) spec = np.log(np.abs(spectrogram.numpy())**2) plt.figure() plt.title("Log Power Spectrogram") plt.imshow(spec[:100, :], origin='lower') plt.show()
W1209 10:31:06.744774 277 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W1209 10:31:06.748571 277 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
spectrogram.shape: [513, 259]
spectrogram.dtype: paddle.complex64
研究表明,人类对声音的感知是非线性的,随着声音频率的增加,人对更高频率的声音的区分度会不断下降。
例如同样是相差 500Hz 的频率,一般人可以轻松分辨出声音中 500Hz 和 1,000Hz 之间的差异,但是很难分辨出 10,000Hz 和 10,500Hz 之间的差异。
因此,学者提出了梅尔频率,在该频率计量方式下,人耳对相同数值的频率变化的感知程度是一样的。
关于梅尔频率的计算,其会对原始频率的低频的部分进行较多的采样,从而对应更多的频率,而对高频的声音进行较少的采样,从而对应较少的频率。使得人耳对梅尔频率的低频和高频的区分性一致。
Mel Fbank 的计算过程如下,而我们一般都是使用 LogFBank 作为识别特征:
下面例子采用 paddleaudio.features.LogMelSpectrogram 演示如何提取示例音频的 LogFBank:
注:n_mels: 梅尔刻度数量和生成向量的第一维度相同
from paddleaudio.features import LogMelSpectrogram from paddleaudio import load import paddle import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt data, sr = load(file='/home/aistudio/dataset/train_sample/soup/BXT66GMTWP.wav', mono=True, dtype='float32') n_fft = 1024 f_min=50.0 f_max=14000.0 win_length = 1024 hop_length = 320 # - sr: 音频文件的采样率。 # - n_fft: FFT样本点个数。 # - hop_length: 音频帧之间的间隔。 # - win_length: 窗函数的长度。 # - window: 窗函数种类。 # - n_mels: 梅尔刻度数量。 feature_extractor = LogMelSpectrogram( sr=sr, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window='hann', f_min=f_min, f_max=f_max, n_mels=64) x = paddle.to_tensor(data).unsqueeze(0) # [B, L] log_fbank = feature_extractor(x) # [B, D, T] log_fbank = log_fbank.squeeze(0) # [D, T] print('log_fbank.shape: {}'.format(log_fbank.shape)) plt.figure() plt.imshow(log_fbank.numpy(), origin='lower') plt.show()
log_fbank.shape: [64, 414]
在传统的声音和信号的研究领域中,声音特征是一类包含丰富先验知识的手工特征,如频谱图、梅尔频谱和梅尔频率倒谱系数等。
因此在一些分类的应用上,可以采用传统的机器学习方法例如决策树、svm和随机森林等方法。
传统机器学习方法可以捕捉声音特征的差异(例如男声和女声的声音在音高上往往差异较大)并实现分类任务。
而深度学习方法则可以突破特征的限制,更灵活的组网方式和更深的网络层次,可以更好地提取声音的高层特征,从而获得更好的分类指标。
通过特征提取,获取到语谱图,也可以通过一些图像分类网络来进行一个分类,也可以用一些流行的声音分类模型,如:AudioCLIP、PANNs、Audio Spectrogram Transformer等
数据集来自Eating Sound Collection,数据集中包含20种不同食物的咀嚼声音,原数据集过大,本次采用train_sample数据集,其中20类分别为:
芦荟 炸薯条 肋骨 泡菜 冰淇淋 糖果 水果 汉堡 面条 软糖
甘蓝 炸薯条 胡萝卜 披萨 巧克力 鲑鱼 饮料 翅膀 果冻 汤 葡萄
首先对数据集进行统计
# 统计音频 # 查音频长度 import contextlib import wave def get_sound_len(file_path): with contextlib.closing(wave.open(file_path, 'r')) as f: frames = f.getnframes() rate = f.getframerate() wav_length = frames / float(rate) return wav_length # 编译wav文件 import glob sound_files=glob.glob('dataset/train_sample/*/*.wav') print(sound_files[0]) print(len(sound_files)) # 统计最长、最短音频 sounds_len=[] for sound in sound_files: sounds_len.append(get_sound_len(sound)) print("音频最大长度:",max(sounds_len),"秒") print("音频最小长度:",min(sounds_len),"秒")
dataset/train_sample/burger/BTUCW3HXI4.wav
1000
音频最大长度: 19.499931972789117 秒
音频最小长度: 1.0004308390022676 秒
# 定义函数,如未达到最大长度,则重复填充,最终从超过20s的音频中截取 from pydub import AudioSegment from tqdm import tqdm def convert_sound_len(filename): audio = AudioSegment.from_wav(filename) i = 1 padded = audio*i while padded.duration_seconds * 1000 < 20000: i = i + 1 padded = audio * i # 采样率设置为16KHz print(audio.duration_seconds) padded[0:20000].set_frame_rate(44100).export(filename, format='wav') # 统一所有音频到定长 for sound in tqdm(sound_files): convert_sound_len(sound)
观察对应的数据集文件夹分布,每一类放在同一个文件夹中,在图像分类中经常有类似的脚本,稍加修改即可
接下来运行脚本
%cd /home/aistudio/dataset
!python /home/aistudio/dataset_process.py
/home/aistudio/dataset
生成txt文件
import cv2 import paddle import numpy as np import os from paddle.io import Dataset from paddle.vision.transforms import transforms as T import io from paddleaudio import load import paddleaudio # step1: 定义MyDataset类, 继承Dataset, 重写抽象方法:__len()__, __getitem()__ class MyDataset(Dataset): def __init__(self, root_dir, names_file): self.root_dir = root_dir self.names_file = names_file self.size = 0 self.names_list = [] self.min_size=[] if not os.path.isfile(self.names_file): print(self.names_file + 'does not exist!') file = open(self.names_file) for f in file: self.names_list.append(f) self.size += 1 def __len__(self): return self.size def __getitem__(self, idx): image_path = self.names_list[idx].split(' ')[0] # print(image_path) if not os.path.isfile(image_path): print(image_path + ' does not exist!') return None wav_file, sr = load(file=image_path, mono=True, dtype='float32') # 单通道,float32音频样本点 label = int(self.names_list[idx].split(' ')[1]) return wav_file, label
选取cnn14
作为 backbone,用于提取音频的特征:
from paddlespeech.cls.models import cnn14
backbone = cnn14(pretrained=True, extract_embedding=True)
[2022-12-09 10:34:59,077] [ INFO] - PaddleAudio | unique_endpoints {''}
[2022-12-09 10:34:59,077] [ INFO] - PaddleAudio | unique_endpoints {''}
[2022-12-09 10:34:59,082] [ INFO] - PaddleAudio | Downloading panns_cnn14.pdparams from https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams
[2022-12-09 10:34:59,082] [ INFO] - PaddleAudio | Downloading panns_cnn14.pdparams from https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams
100%|██████████| 479758/479758 [02:38<00:00, 3022.47it/s]
SoundClassifer
接收cnn14
作为backbone模型,并创建下游的分类网络:
import paddle.nn as nn class SoundClassifier(nn.Layer): def __init__(self, backbone, num_class, dropout=0.1): super().__init__() self.backbone = backbone self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(self.backbone.emb_size, num_class) def forward(self, x): x = x.unsqueeze(1) x = self.backbone(x) x = self.dropout(x) logits = self.fc(x) return logits model = SoundClassifier(backbone, num_class=20)
# t = paddle.randn([4, 1, 2743, 64])
# out = model(t)
# print(out.shape)
audio_class_train= MyDataset(root_dir='/home/aistudio/dataset/train_sample',
names_file='/home/aistudio/dataset/train_list.txt',
)
audio_class_test= MyDataset(root_dir='/home/aistudio/dataset/train_sample',
names_file='/home/aistudio/dataset/val_list.txt',
)
batch_size = 16
train_loader = paddle.io.DataLoader(audio_class_train, batch_size=batch_size, shuffle=True)
dev_loader = paddle.io.DataLoader(audio_class_test, batch_size=batch_size)
# 优化器和损失函数
optimizer = paddle.optimizer.Adam(learning_rate=1e-4, parameters=model.parameters())
criterion = paddle.nn.loss.CrossEntropyLoss()
from paddleaudio.utils import logger epochs = 20 steps_per_epoch = len(train_loader) log_freq = 10 eval_freq = 10 for epoch in range(1, epochs + 1): model.train() avg_loss = 0 num_corrects = 0 num_samples = 0 for batch_idx, batch in enumerate(train_loader): waveforms, labels = batch feats = feature_extractor(waveforms) feats = paddle.transpose(feats, [0, 2, 1]) # [B, N, T] -> [B, T, N] logits = model(feats) loss = criterion(logits, labels) loss.backward() optimizer.step() if isinstance(optimizer._learning_rate, paddle.optimizer.lr.LRScheduler): optimizer._learning_rate.step() optimizer.clear_grad() # Calculate loss avg_loss += loss.numpy()[0] # Calculate metrics preds = paddle.argmax(logits, axis=1) num_corrects += (preds == labels).numpy().sum() num_samples += feats.shape[0] if (batch_idx + 1) % log_freq == 0: lr = optimizer.get_lr() avg_loss /= log_freq avg_acc = num_corrects / num_samples print_msg = 'Epoch={}/{}, Step={}/{}'.format( epoch, epochs, batch_idx + 1, steps_per_epoch) print_msg += ' loss={:.4f}'.format(avg_loss) print_msg += ' acc={:.4f}'.format(avg_acc) print_msg += ' lr={:.6f}'.format(lr) logger.train(print_msg) avg_loss = 0 num_corrects = 0 num_samples = 0 if epoch % eval_freq == 0 and batch_idx + 1 == steps_per_epoch: model.eval() num_corrects = 0 num_samples = 0 with logger.processing('Evaluation on validation dataset'): for batch_idx, batch in enumerate(dev_loader): waveforms, labels = batch feats = feature_extractor(waveforms) feats = paddle.transpose(feats, [0, 2, 1]) logits = model(feats) preds = paddle.argmax(logits, axis=1) num_corrects += (preds == labels).numpy().sum() num_samples += feats.shape[0] print_msg = '[Evaluation result]' print_msg += ' dev_acc={:.4f}'.format(num_corrects / num_samples) logger.eval(print_msg)
[2022-12-09 10:47:48,207] [ TRAIN] - Epoch=1/20, Step=10/106 loss=0.4228 acc=0.8562 lr=0.000100 [2022-12-09 10:47:48,207] [ TRAIN] - Epoch=1/20, Step=10/106 loss=0.4228 acc=0.8562 lr=0.000100 [2022-12-09 10:47:51,796] [ TRAIN] - Epoch=1/20, Step=20/106 loss=0.4655 acc=0.8750 lr=0.000100 [2022-12-09 10:47:51,796] [ TRAIN] - Epoch=1/20, Step=20/106 loss=0.4655 acc=0.8750 lr=0.000100 [2022-12-09 10:47:55,398] [ TRAIN] - Epoch=1/20, Step=30/106 loss=0.4093 acc=0.8875 lr=0.000100 [2022-12-09 10:47:55,398] [ TRAIN] - Epoch=1/20, Step=30/106 loss=0.4093 acc=0.8875 lr=0.000100 [2022-12-09 10:47:59,009] [ TRAIN] - Epoch=1/20, Step=40/106 loss=0.4456 acc=0.8562 lr=0.000100 [2022-12-09 10:47:59,009] [ TRAIN] - Epoch=1/20, Step=40/106 loss=0.4456 acc=0.8562 lr=0.000100 [2022-12-09 10:48:02,618] [ TRAIN] - Epoch=1/20, Step=50/106 loss=0.4828 acc=0.8375 lr=0.000100 [2022-12-09 10:48:02,618] [ TRAIN] - Epoch=1/20, Step=50/106 loss=0.4828 acc=0.8375 lr=0.000100 [2022-12-09 10:48:06,238] [ TRAIN] - Epoch=1/20, Step=60/106 loss=0.5426 acc=0.8313 lr=0.000100 [2022-12-09 10:48:06,238] [ TRAIN] - Epoch=1/20, Step=60/106 loss=0.5426 acc=0.8313 lr=0.000100 [2022-12-09 10:48:09,849] [ TRAIN] - Epoch=1/20, Step=70/106 loss=0.3824 acc=0.8750 lr=0.000100 [2022-12-09 10:48:09,849] [ TRAIN] - Epoch=1/20, Step=70/106 loss=0.3824 acc=0.8750 lr=0.000100 [2022-12-09 10:48:13,603] [ TRAIN] - Epoch=1/20, Step=80/106 loss=0.4609 acc=0.8562 lr=0.000100 [2022-12-09 10:48:13,603] [ TRAIN] - Epoch=1/20, Step=80/106 loss=0.4609 acc=0.8562 lr=0.000100 [2022-12-09 10:48:17,286] [ TRAIN] - Epoch=1/20, Step=90/106 loss=0.5186 acc=0.8250 lr=0.000100 [2022-12-09 10:48:17,286] [ TRAIN] - Epoch=1/20, Step=90/106 loss=0.5186 acc=0.8250 lr=0.000100 [2022-12-09 10:48:20,932] [ TRAIN] - Epoch=1/20, Step=100/106 loss=0.4480 acc=0.8500 lr=0.000100 [2022-12-09 10:48:20,932] [ TRAIN] - Epoch=1/20, Step=100/106 loss=0.4480 acc=0.8500 lr=0.000100 [2022-12-09 10:48:26,737] [ TRAIN] - Epoch=2/20, Step=10/106 loss=0.3637 acc=0.8812 lr=0.000100 [2022-12-09 10:48:26,737] [ TRAIN] - Epoch=2/20, Step=10/106 loss=0.3637 acc=0.8812 lr=0.000100 [2022-12-09 10:48:30,341] [ TRAIN] - Epoch=2/20, Step=20/106 loss=0.4809 acc=0.8438 lr=0.000100 [2022-12-09 10:48:30,341] [ TRAIN] - Epoch=2/20, Step=20/106 loss=0.4809 acc=0.8438 lr=0.000100 [2022-12-09 10:48:33,969] [ TRAIN] - Epoch=2/20, Step=30/106 loss=0.3459 acc=0.8812 lr=0.000100 [2022-12-09 10:48:33,969] [ TRAIN] - Epoch=2/20, Step=30/106 loss=0.3459 acc=0.8812 lr=0.000100 [2022-12-09 10:48:37,580] [ TRAIN] - Epoch=2/20, Step=40/106 loss=0.3307 acc=0.8688 lr=0.000100 [2022-12-09 10:48:37,580] [ TRAIN] - Epoch=2/20, Step=40/106 loss=0.3307 acc=0.8688 lr=0.000100 [2022-12-09 10:48:41,226] [ TRAIN] - Epoch=2/20, Step=50/106 loss=0.3609 acc=0.8938 lr=0.000100 [2022-12-09 10:48:41,226] [ TRAIN] - Epoch=2/20, Step=50/106 loss=0.3609 acc=0.8938 lr=0.000100 [2022-12-09 10:48:44,848] [ TRAIN] - Epoch=2/20, Step=60/106 loss=0.3387 acc=0.9000 lr=0.000100 [2022-12-09 10:48:44,848] [ TRAIN] - Epoch=2/20, Step=60/106 loss=0.3387 acc=0.9000 lr=0.000100 [2022-12-09 10:48:48,475] [ TRAIN] - Epoch=2/20, Step=70/106 loss=0.4635 acc=0.8750 lr=0.000100 [2022-12-09 10:48:48,475] [ TRAIN] - Epoch=2/20, Step=70/106 loss=0.4635 acc=0.8750 lr=0.000100 [2022-12-09 10:48:52,115] [ TRAIN] - Epoch=2/20, Step=80/106 loss=0.4804 acc=0.8313 lr=0.000100 [2022-12-09 10:48:52,115] [ TRAIN] - Epoch=2/20, Step=80/106 loss=0.4804 acc=0.8313 lr=0.000100 [2022-12-09 10:48:55,743] [ TRAIN] - Epoch=2/20, Step=90/106 loss=0.4046 acc=0.8500 lr=0.000100 [2022-12-09 10:48:55,743] [ TRAIN] - Epoch=2/20, Step=90/106 loss=0.4046 acc=0.8500 lr=0.000100 [2022-12-09 10:48:59,363] [ TRAIN] - Epoch=2/20, Step=100/106 loss=0.3964 acc=0.8875 lr=0.000100 [2022-12-09 10:48:59,363] [ TRAIN] - Epoch=2/20, Step=100/106 loss=0.3964 acc=0.8875 lr=0.000100 [2022-12-09 10:49:05,174] [ TRAIN] - Epoch=3/20, Step=10/106 loss=0.3778 acc=0.8938 lr=0.000100 [2022-12-09 10:49:05,174] [ TRAIN] - Epoch=3/20, Step=10/106 loss=0.3778 acc=0.8938 lr=0.000100 [2022-12-09 10:49:08,858] [ TRAIN] - Epoch=3/20, Step=20/106 loss=0.3715 acc=0.8812 lr=0.000100 [2022-12-09 10:49:08,858] [ TRAIN] - Epoch=3/20, Step=20/106 loss=0.3715 acc=0.8812 lr=0.000100 [2022-12-09 10:49:12,492] [ TRAIN] - Epoch=3/20, Step=30/106 loss=0.2956 acc=0.9187 lr=0.000100 [2022-12-09 10:49:12,492] [ TRAIN] - Epoch=3/20, Step=30/106 loss=0.2956 acc=0.9187 lr=0.000100 [2022-12-09 10:49:16,130] [ TRAIN] - Epoch=3/20, Step=40/106 loss=0.3193 acc=0.8812 lr=0.000100 [2022-12-09 10:49:16,130] [ TRAIN] - Epoch=3/20, Step=40/106 loss=0.3193 acc=0.8812 lr=0.000100 [2022-12-09 10:49:19,765] [ TRAIN] - Epoch=3/20, Step=50/106 loss=0.3480 acc=0.9187 lr=0.000100 [2022-12-09 10:49:19,765] [ TRAIN] - Epoch=3/20, Step=50/106 loss=0.3480 acc=0.9187 lr=0.000100 [2022-12-09 10:49:23,412] [ TRAIN] - Epoch=3/20, Step=60/106 loss=0.3990 acc=0.9000 lr=0.000100 [2022-12-09 10:49:23,412] [ TRAIN] - Epoch=3/20, Step=60/106 loss=0.3990 acc=0.9000 lr=0.000100 [2022-12-09 10:49:27,048] [ TRAIN] - Epoch=3/20, Step=70/106 loss=0.2715 acc=0.9250 lr=0.000100 [2022-12-09 10:49:27,048] [ TRAIN] - Epoch=3/20, Step=70/106 loss=0.2715 acc=0.9250 lr=0.000100 [2022-12-09 10:49:30,701] [ TRAIN] - Epoch=3/20, Step=80/106 loss=0.3420 acc=0.9000 lr=0.000100 [2022-12-09 10:49:30,701] [ TRAIN] - Epoch=3/20, Step=80/106 loss=0.3420 acc=0.9000 lr=0.000100 [2022-12-09 10:49:34,334] [ TRAIN] - Epoch=3/20, Step=90/106 loss=0.4182 acc=0.8875 lr=0.000100 [2022-12-09 10:49:34,334] [ TRAIN] - Epoch=3/20, Step=90/106 loss=0.4182 acc=0.8875 lr=0.000100 [2022-12-09 10:49:37,958] [ TRAIN] - Epoch=3/20, Step=100/106 loss=0.3199 acc=0.8938 lr=0.000100 [2022-12-09 10:49:37,958] [ TRAIN] - Epoch=3/20, Step=100/106 loss=0.3199 acc=0.8938 lr=0.000100 [2022-12-09 10:49:44,001] [ TRAIN] - Epoch=4/20, Step=10/106 loss=0.3004 acc=0.9000 lr=0.000100 [2022-12-09 10:49:44,001] [ TRAIN] - Epoch=4/20, Step=10/106 loss=0.3004 acc=0.9000 lr=0.000100 [2022-12-09 10:49:47,649] [ TRAIN] - Epoch=4/20, Step=20/106 loss=0.2874 acc=0.9125 lr=0.000100 [2022-12-09 10:49:47,649] [ TRAIN] - Epoch=4/20, Step=20/106 loss=0.2874 acc=0.9125 lr=0.000100 [2022-12-09 10:49:51,281] [ TRAIN] - Epoch=4/20, Step=30/106 loss=0.2830 acc=0.9187 lr=0.000100 [2022-12-09 10:49:51,281] [ TRAIN] - Epoch=4/20, Step=30/106 loss=0.2830 acc=0.9187 lr=0.000100 [2022-12-09 10:49:54,925] [ TRAIN] - Epoch=4/20, Step=40/106 loss=0.2824 acc=0.9250 lr=0.000100 [2022-12-09 10:49:54,925] [ TRAIN] - Epoch=4/20, Step=40/106 loss=0.2824 acc=0.9250 lr=0.000100 [2022-12-09 10:49:58,570] [ TRAIN] - Epoch=4/20, Step=50/106 loss=0.2775 acc=0.9062 lr=0.000100 [2022-12-09 10:49:58,570] [ TRAIN] - Epoch=4/20, Step=50/106 loss=0.2775 acc=0.9062 lr=0.000100 [2022-12-09 10:50:02,206] [ TRAIN] - Epoch=4/20, Step=60/106 loss=0.2462 acc=0.9125 lr=0.000100 [2022-12-09 10:50:02,206] [ TRAIN] - Epoch=4/20, Step=60/106 loss=0.2462 acc=0.9125 lr=0.000100 [2022-12-09 10:50:05,884] [ TRAIN] - Epoch=4/20, Step=70/106 loss=0.2653 acc=0.9313 lr=0.000100 [2022-12-09 10:50:05,884] [ TRAIN] - Epoch=4/20, Step=70/106 loss=0.2653 acc=0.9313 lr=0.000100 [2022-12-09 10:50:09,534] [ TRAIN] - Epoch=4/20, Step=80/106 loss=0.2639 acc=0.9062 lr=0.000100 [2022-12-09 10:50:09,534] [ TRAIN] - Epoch=4/20, Step=80/106 loss=0.2639 acc=0.9062 lr=0.000100 [2022-12-09 10:50:13,181] [ TRAIN] - Epoch=4/20, Step=90/106 loss=0.2453 acc=0.9125 lr=0.000100 [2022-12-09 10:50:13,181] [ TRAIN] - Epoch=4/20, Step=90/106 loss=0.2453 acc=0.9125 lr=0.000100 [2022-12-09 10:50:16,807] [ TRAIN] - Epoch=4/20, Step=100/106 loss=0.3200 acc=0.8938 lr=0.000100 [2022-12-09 10:50:16,807] [ TRAIN] - Epoch=4/20, Step=100/106 loss=0.3200 acc=0.8938 lr=0.000100 [2022-12-09 10:50:22,672] [ TRAIN] - Epoch=5/20, Step=10/106 loss=0.2528 acc=0.9125 lr=0.000100 [2022-12-09 10:50:22,672] [ TRAIN] - Epoch=5/20, Step=10/106 loss=0.2528 acc=0.9125 lr=0.000100 [2022-12-09 10:50:26,308] [ TRAIN] - Epoch=5/20, Step=20/106 loss=0.2086 acc=0.9313 lr=0.000100 [2022-12-09 10:50:26,308] [ TRAIN] - Epoch=5/20, Step=20/106 loss=0.2086 acc=0.9313 lr=0.000100 [2022-12-09 10:50:29,955] [ TRAIN] - Epoch=5/20, Step=30/106 loss=0.2223 acc=0.9250 lr=0.000100 [2022-12-09 10:50:29,955] [ TRAIN] - Epoch=5/20, Step=30/106 loss=0.2223 acc=0.9250 lr=0.000100 [2022-12-09 10:50:33,619] [ TRAIN] - Epoch=5/20, Step=40/106 loss=0.2726 acc=0.8938 lr=0.000100 [2022-12-09 10:50:33,619] [ TRAIN] - Epoch=5/20, Step=40/106 loss=0.2726 acc=0.8938 lr=0.000100 [2022-12-09 10:50:37,257] [ TRAIN] - Epoch=5/20, Step=50/106 loss=0.2190 acc=0.9250 lr=0.000100 [2022-12-09 10:50:37,257] [ TRAIN] - Epoch=5/20, Step=50/106 loss=0.2190 acc=0.9250 lr=0.000100 [2022-12-09 10:50:40,956] [ TRAIN] - Epoch=5/20, Step=60/106 loss=0.2489 acc=0.9250 lr=0.000100 [2022-12-09 10:50:40,956] [ TRAIN] - Epoch=5/20, Step=60/106 loss=0.2489 acc=0.9250 lr=0.000100 [2022-12-09 10:50:44,598] [ TRAIN] - Epoch=5/20, Step=70/106 loss=0.2831 acc=0.8938 lr=0.000100 [2022-12-09 10:50:44,598] [ TRAIN] - Epoch=5/20, Step=70/106 loss=0.2831 acc=0.8938 lr=0.000100 [2022-12-09 10:50:48,259] [ TRAIN] - Epoch=5/20, Step=80/106 loss=0.1659 acc=0.9625 lr=0.000100 [2022-12-09 10:50:48,259] [ TRAIN] - Epoch=5/20, Step=80/106 loss=0.1659 acc=0.9625 lr=0.000100 [2022-12-09 10:50:51,901] [ TRAIN] - Epoch=5/20, Step=90/106 loss=0.2849 acc=0.9000 lr=0.000100 [2022-12-09 10:50:51,901] [ TRAIN] - Epoch=5/20, Step=90/106 loss=0.2849 acc=0.9000 lr=0.000100 [2022-12-09 10:50:55,562] [ TRAIN] - Epoch=5/20, Step=100/106 loss=0.1572 acc=0.9437 lr=0.000100 [2022-12-09 10:50:55,562] [ TRAIN] - Epoch=5/20, Step=100/106 loss=0.1572 acc=0.9437 lr=0.000100 [2022-12-09 10:51:01,418] [ TRAIN] - Epoch=6/20, Step=10/106 loss=0.1413 acc=0.9500 lr=0.000100 [2022-12-09 10:51:01,418] [ TRAIN] - Epoch=6/20, Step=10/106 loss=0.1413 acc=0.9500 lr=0.000100 [2022-12-09 10:51:05,078] [ TRAIN] - Epoch=6/20, Step=20/106 loss=0.2099 acc=0.9500 lr=0.000100 [2022-12-09 10:51:05,078] [ TRAIN] - Epoch=6/20, Step=20/106 loss=0.2099 acc=0.9500 lr=0.000100 [2022-12-09 10:51:08,732] [ TRAIN] - Epoch=6/20, Step=30/106 loss=0.1793 acc=0.9313 lr=0.000100 [2022-12-09 10:51:08,732] [ TRAIN] - Epoch=6/20, Step=30/106 loss=0.1793 acc=0.9313 lr=0.000100 [2022-12-09 10:51:12,414] [ TRAIN] - Epoch=6/20, Step=40/106 loss=0.2206 acc=0.9375 lr=0.000100 [2022-12-09 10:51:12,414] [ TRAIN] - Epoch=6/20, Step=40/106 loss=0.2206 acc=0.9375 lr=0.000100 [2022-12-09 10:51:16,090] [ TRAIN] - Epoch=6/20, Step=50/106 loss=0.3276 acc=0.9062 lr=0.000100 [2022-12-09 10:51:16,090] [ TRAIN] - Epoch=6/20, Step=50/106 loss=0.3276 acc=0.9062 lr=0.000100 [2022-12-09 10:51:19,726] [ TRAIN] - Epoch=6/20, Step=60/106 loss=0.1692 acc=0.9437 lr=0.000100 [2022-12-09 10:51:19,726] [ TRAIN] - Epoch=6/20, Step=60/106 loss=0.1692 acc=0.9437 lr=0.000100 [2022-12-09 10:51:23,398] [ TRAIN] - Epoch=6/20, Step=70/106 loss=0.1371 acc=0.9625 lr=0.000100 [2022-12-09 10:51:23,398] [ TRAIN] - Epoch=6/20, Step=70/106 loss=0.1371 acc=0.9625 lr=0.000100 [2022-12-09 10:51:27,059] [ TRAIN] - Epoch=6/20, Step=80/106 loss=0.1419 acc=0.9563 lr=0.000100 [2022-12-09 10:51:27,059] [ TRAIN] - Epoch=6/20, Step=80/106 loss=0.1419 acc=0.9563 lr=0.000100 [2022-12-09 10:51:30,718] [ TRAIN] - Epoch=6/20, Step=90/106 loss=0.3444 acc=0.8938 lr=0.000100 [2022-12-09 10:51:30,718] [ TRAIN] - Epoch=6/20, Step=90/106 loss=0.3444 acc=0.8938 lr=0.000100 [2022-12-09 10:51:34,423] [ TRAIN] - Epoch=6/20, Step=100/106 loss=0.2215 acc=0.9187 lr=0.000100 [2022-12-09 10:51:34,423] [ TRAIN] - Epoch=6/20, Step=100/106 loss=0.2215 acc=0.9187 lr=0.000100 [2022-12-09 10:51:40,330] [ TRAIN] - Epoch=7/20, Step=10/106 loss=0.2179 acc=0.9375 lr=0.000100 [2022-12-09 10:51:40,330] [ TRAIN] - Epoch=7/20, Step=10/106 loss=0.2179 acc=0.9375 lr=0.000100 [2022-12-09 10:51:43,991] [ TRAIN] - Epoch=7/20, Step=20/106 loss=0.2287 acc=0.9375 lr=0.000100 [2022-12-09 10:51:43,991] [ TRAIN] - Epoch=7/20, Step=20/106 loss=0.2287 acc=0.9375 lr=0.000100 [2022-12-09 10:51:47,637] [ TRAIN] - Epoch=7/20, Step=30/106 loss=0.1441 acc=0.9625 lr=0.000100 [2022-12-09 10:51:47,637] [ TRAIN] - Epoch=7/20, Step=30/106 loss=0.1441 acc=0.9625 lr=0.000100 [2022-12-09 10:51:51,300] [ TRAIN] - Epoch=7/20, Step=40/106 loss=0.1629 acc=0.9500 lr=0.000100 [2022-12-09 10:51:51,300] [ TRAIN] - Epoch=7/20, Step=40/106 loss=0.1629 acc=0.9500 lr=0.000100 [2022-12-09 10:51:54,938] [ TRAIN] - Epoch=7/20, Step=50/106 loss=0.2017 acc=0.9500 lr=0.000100 [2022-12-09 10:51:54,938] [ TRAIN] - Epoch=7/20, Step=50/106 loss=0.2017 acc=0.9500 lr=0.000100 [2022-12-09 10:51:58,572] [ TRAIN] - Epoch=7/20, Step=60/106 loss=0.1457 acc=0.9563 lr=0.000100 [2022-12-09 10:51:58,572] [ TRAIN] - Epoch=7/20, Step=60/106 loss=0.1457 acc=0.9563 lr=0.000100 [2022-12-09 10:52:02,237] [ TRAIN] - Epoch=7/20, Step=70/106 loss=0.2145 acc=0.9187 lr=0.000100 [2022-12-09 10:52:02,237] [ TRAIN] - Epoch=7/20, Step=70/106 loss=0.2145 acc=0.9187 lr=0.000100 [2022-12-09 10:52:05,867] [ TRAIN] - Epoch=7/20, Step=80/106 loss=0.1350 acc=0.9563 lr=0.000100 [2022-12-09 10:52:05,867] [ TRAIN] - Epoch=7/20, Step=80/106 loss=0.1350 acc=0.9563 lr=0.000100 [2022-12-09 10:52:09,532] [ TRAIN] - Epoch=7/20, Step=90/106 loss=0.1712 acc=0.9500 lr=0.000100 [2022-12-09 10:52:09,532] [ TRAIN] - Epoch=7/20, Step=90/106 loss=0.1712 acc=0.9500 lr=0.000100 [2022-12-09 10:52:13,173] [ TRAIN] - Epoch=7/20, Step=100/106 loss=0.1883 acc=0.9250 lr=0.000100 [2022-12-09 10:52:13,173] [ TRAIN] - Epoch=7/20, Step=100/106 loss=0.1883 acc=0.9250 lr=0.000100 [2022-12-09 10:52:19,018] [ TRAIN] - Epoch=8/20, Step=10/106 loss=0.1632 acc=0.9375 lr=0.000100 [2022-12-09 10:52:19,018] [ TRAIN] - Epoch=8/20, Step=10/106 loss=0.1632 acc=0.9375 lr=0.000100 [2022-12-09 10:52:22,651] [ TRAIN] - Epoch=8/20, Step=20/106 loss=0.2251 acc=0.9250 lr=0.000100 [2022-12-09 10:52:22,651] [ TRAIN] - Epoch=8/20, Step=20/106 loss=0.2251 acc=0.9250 lr=0.000100 [2022-12-09 10:52:26,289] [ TRAIN] - Epoch=8/20, Step=30/106 loss=0.2113 acc=0.9250 lr=0.000100 [2022-12-09 10:52:26,289] [ TRAIN] - Epoch=8/20, Step=30/106 loss=0.2113 acc=0.9250 lr=0.000100 [2022-12-09 10:52:29,916] [ TRAIN] - Epoch=8/20, Step=40/106 loss=0.1473 acc=0.9563 lr=0.000100 [2022-12-09 10:52:29,916] [ TRAIN] - Epoch=8/20, Step=40/106 loss=0.1473 acc=0.9563 lr=0.000100 [2022-12-09 10:52:33,622] [ TRAIN] - Epoch=8/20, Step=50/106 loss=0.2154 acc=0.9250 lr=0.000100 [2022-12-09 10:52:33,622] [ TRAIN] - Epoch=8/20, Step=50/106 loss=0.2154 acc=0.9250 lr=0.000100 [2022-12-09 10:52:37,264] [ TRAIN] - Epoch=8/20, Step=60/106 loss=0.2223 acc=0.9250 lr=0.000100 [2022-12-09 10:52:37,264] [ TRAIN] - Epoch=8/20, Step=60/106 loss=0.2223 acc=0.9250 lr=0.000100 [2022-12-09 10:52:40,901] [ TRAIN] - Epoch=8/20, Step=70/106 loss=0.1945 acc=0.9563 lr=0.000100 [2022-12-09 10:52:40,901] [ TRAIN] - Epoch=8/20, Step=70/106 loss=0.1945 acc=0.9563 lr=0.000100 [2022-12-09 10:52:44,575] [ TRAIN] - Epoch=8/20, Step=80/106 loss=0.1215 acc=0.9625 lr=0.000100 [2022-12-09 10:52:44,575] [ TRAIN] - Epoch=8/20, Step=80/106 loss=0.1215 acc=0.9625 lr=0.000100 [2022-12-09 10:52:48,240] [ TRAIN] - Epoch=8/20, Step=90/106 loss=0.1042 acc=0.9500 lr=0.000100 [2022-12-09 10:52:48,240] [ TRAIN] - Epoch=8/20, Step=90/106 loss=0.1042 acc=0.9500 lr=0.000100 [2022-12-09 10:52:51,882] [ TRAIN] - Epoch=8/20, Step=100/106 loss=0.1984 acc=0.9250 lr=0.000100 [2022-12-09 10:52:51,882] [ TRAIN] - Epoch=8/20, Step=100/106 loss=0.1984 acc=0.9250 lr=0.000100 [2022-12-09 10:52:57,734] [ TRAIN] - Epoch=9/20, Step=10/106 loss=0.1499 acc=0.9563 lr=0.000100 [2022-12-09 10:52:57,734] [ TRAIN] - Epoch=9/20, Step=10/106 loss=0.1499 acc=0.9563 lr=0.000100 [2022-12-09 10:53:01,389] [ TRAIN] - Epoch=9/20, Step=20/106 loss=0.1508 acc=0.9437 lr=0.000100 [2022-12-09 10:53:01,389] [ TRAIN] - Epoch=9/20, Step=20/106 loss=0.1508 acc=0.9437 lr=0.000100 [2022-12-09 10:53:05,026] [ TRAIN] - Epoch=9/20, Step=30/106 loss=0.0846 acc=0.9750 lr=0.000100 [2022-12-09 10:53:05,026] [ TRAIN] - Epoch=9/20, Step=30/106 loss=0.0846 acc=0.9750 lr=0.000100 [2022-12-09 10:53:08,657] [ TRAIN] - Epoch=9/20, Step=40/106 loss=0.2197 acc=0.9437 lr=0.000100 [2022-12-09 10:53:08,657] [ TRAIN] - Epoch=9/20, Step=40/106 loss=0.2197 acc=0.9437 lr=0.000100 [2022-12-09 10:53:12,315] [ TRAIN] - Epoch=9/20, Step=50/106 loss=0.1585 acc=0.9437 lr=0.000100 [2022-12-09 10:53:12,315] [ TRAIN] - Epoch=9/20, Step=50/106 loss=0.1585 acc=0.9437 lr=0.000100 [2022-12-09 10:53:15,975] [ TRAIN] - Epoch=9/20, Step=60/106 loss=0.1662 acc=0.9500 lr=0.000100 [2022-12-09 10:53:15,975] [ TRAIN] - Epoch=9/20, Step=60/106 loss=0.1662 acc=0.9500 lr=0.000100 [2022-12-09 10:53:19,622] [ TRAIN] - Epoch=9/20, Step=70/106 loss=0.1567 acc=0.9437 lr=0.000100 [2022-12-09 10:53:19,622] [ TRAIN] - Epoch=9/20, Step=70/106 loss=0.1567 acc=0.9437 lr=0.000100 [2022-12-09 10:53:23,260] [ TRAIN] - Epoch=9/20, Step=80/106 loss=0.1615 acc=0.9500 lr=0.000100 [2022-12-09 10:53:23,260] [ TRAIN] - Epoch=9/20, Step=80/106 loss=0.1615 acc=0.9500 lr=0.000100 [2022-12-09 10:53:26,901] [ TRAIN] - Epoch=9/20, Step=90/106 loss=0.1615 acc=0.9250 lr=0.000100 [2022-12-09 10:53:26,901] [ TRAIN] - Epoch=9/20, Step=90/106 loss=0.1615 acc=0.9250 lr=0.000100 [2022-12-09 10:53:30,532] [ TRAIN] - Epoch=9/20, Step=100/106 loss=0.1254 acc=0.9875 lr=0.000100 [2022-12-09 10:53:30,532] [ TRAIN] - Epoch=9/20, Step=100/106 loss=0.1254 acc=0.9875 lr=0.000100 [2022-12-09 10:53:36,358] [ TRAIN] - Epoch=10/20, Step=10/106 loss=0.1127 acc=0.9563 lr=0.000100 [2022-12-09 10:53:36,358] [ TRAIN] - Epoch=10/20, Step=10/106 loss=0.1127 acc=0.9563 lr=0.000100 [2022-12-09 10:53:39,999] [ TRAIN] - Epoch=10/20, Step=20/106 loss=0.0768 acc=0.9750 lr=0.000100 [2022-12-09 10:53:39,999] [ TRAIN] - Epoch=10/20, Step=20/106 loss=0.0768 acc=0.9750 lr=0.000100 [2022-12-09 10:53:43,629] [ TRAIN] - Epoch=10/20, Step=30/106 loss=0.1017 acc=0.9688 lr=0.000100 [2022-12-09 10:53:43,629] [ TRAIN] - Epoch=10/20, Step=30/106 loss=0.1017 acc=0.9688 lr=0.000100 [2022-12-09 10:53:47,337] [ TRAIN] - Epoch=10/20, Step=40/106 loss=0.0693 acc=0.9875 lr=0.000100 [2022-12-09 10:53:47,337] [ TRAIN] - Epoch=10/20, Step=40/106 loss=0.0693 acc=0.9875 lr=0.000100 [2022-12-09 10:53:51,019] [ TRAIN] - Epoch=10/20, Step=50/106 loss=0.1815 acc=0.9563 lr=0.000100 [2022-12-09 10:53:51,019] [ TRAIN] - Epoch=10/20, Step=50/106 loss=0.1815 acc=0.9563 lr=0.000100 [2022-12-09 10:53:54,661] [ TRAIN] - Epoch=10/20, Step=60/106 loss=0.2066 acc=0.9375 lr=0.000100 [2022-12-09 10:53:54,661] [ TRAIN] - Epoch=10/20, Step=60/106 loss=0.2066 acc=0.9375 lr=0.000100 [2022-12-09 10:53:58,306] [ TRAIN] - Epoch=10/20, Step=70/106 loss=0.0916 acc=0.9750 lr=0.000100 [2022-12-09 10:53:58,306] [ TRAIN] - Epoch=10/20, Step=70/106 loss=0.0916 acc=0.9750 lr=0.000100 [2022-12-09 10:54:01,960] [ TRAIN] - Epoch=10/20, Step=80/106 loss=0.1479 acc=0.9625 lr=0.000100 [2022-12-09 10:54:01,960] [ TRAIN] - Epoch=10/20, Step=80/106 loss=0.1479 acc=0.9625 lr=0.000100 [2022-12-09 10:54:05,604] [ TRAIN] - Epoch=10/20, Step=90/106 loss=0.0931 acc=0.9750 lr=0.000100 [2022-12-09 10:54:05,604] [ TRAIN] - Epoch=10/20, Step=90/106 loss=0.0931 acc=0.9750 lr=0.000100 [2022-12-09 10:54:09,270] [ TRAIN] - Epoch=10/20, Step=100/106 loss=0.0987 acc=0.9688 lr=0.000100 [2022-12-09 10:54:09,270] [ TRAIN] - Epoch=10/20, Step=100/106 loss=0.0987 acc=0.9688 lr=0.000100 [2022-12-09 10:54:11,346] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 10:54:11,454] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 10:54:11,559] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 10:54:11,665] [ INFO] - Evaluation on validation dataset: - - Evaluation on validation dataset: - [2022-12-09 10:54:11,771] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 10:54:11,878] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 10:54:11,985] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 10:54:12,092] [ INFO] - Evaluation on validation dataset: - - Evaluation on validation dataset: - [2022-12-09 10:54:12,206] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 10:54:12,324] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 10:54:12,440] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 10:54:12,556] [ INFO] - Evaluation on validation dataset: - - Evaluation on validation dataset: - [2022-12-09 10:54:12,668] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 10:54:12,785] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 10:54:12,891] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 10:54:12,909] [ EVAL] - [Evaluation result] dev_acc=1.0000 [2022-12-09 10:54:12,909] [ EVAL] - [Evaluation result] dev_acc=1.0000 [2022-12-09 10:54:16,698] [ TRAIN] - Epoch=11/20, Step=10/106 loss=0.1156 acc=0.9750 lr=0.000100 [2022-12-09 10:54:16,698] [ TRAIN] - Epoch=11/20, Step=10/106 loss=0.1156 acc=0.9750 lr=0.000100 [2022-12-09 10:54:20,380] [ TRAIN] - Epoch=11/20, Step=20/106 loss=0.1157 acc=0.9812 lr=0.000100 [2022-12-09 10:54:20,380] [ TRAIN] - Epoch=11/20, Step=20/106 loss=0.1157 acc=0.9812 lr=0.000100 [2022-12-09 10:54:24,054] [ TRAIN] - Epoch=11/20, Step=30/106 loss=0.1217 acc=0.9750 lr=0.000100 [2022-12-09 10:54:24,054] [ TRAIN] - Epoch=11/20, Step=30/106 loss=0.1217 acc=0.9750 lr=0.000100 [2022-12-09 10:54:27,699] [ TRAIN] - Epoch=11/20, Step=40/106 loss=0.0621 acc=0.9938 lr=0.000100 [2022-12-09 10:54:27,699] [ TRAIN] - Epoch=11/20, Step=40/106 loss=0.0621 acc=0.9938 lr=0.000100 [2022-12-09 10:54:31,366] [ TRAIN] - Epoch=11/20, Step=50/106 loss=0.1306 acc=0.9437 lr=0.000100 [2022-12-09 10:54:31,366] [ TRAIN] - Epoch=11/20, Step=50/106 loss=0.1306 acc=0.9437 lr=0.000100 [2022-12-09 10:54:35,031] [ TRAIN] - Epoch=11/20, Step=60/106 loss=0.1006 acc=0.9625 lr=0.000100 [2022-12-09 10:54:35,031] [ TRAIN] - Epoch=11/20, Step=60/106 loss=0.1006 acc=0.9625 lr=0.000100 [2022-12-09 10:54:38,692] [ TRAIN] - Epoch=11/20, Step=70/106 loss=0.1329 acc=0.9500 lr=0.000100 [2022-12-09 10:54:38,692] [ TRAIN] - Epoch=11/20, Step=70/106 loss=0.1329 acc=0.9500 lr=0.000100 [2022-12-09 10:54:42,319] [ TRAIN] - Epoch=11/20, Step=80/106 loss=0.0967 acc=0.9563 lr=0.000100 [2022-12-09 10:54:42,319] [ TRAIN] - Epoch=11/20, Step=80/106 loss=0.0967 acc=0.9563 lr=0.000100 [2022-12-09 10:54:45,960] [ TRAIN] - Epoch=11/20, Step=90/106 loss=0.2513 acc=0.9250 lr=0.000100 [2022-12-09 10:54:45,960] [ TRAIN] - Epoch=11/20, Step=90/106 loss=0.2513 acc=0.9250 lr=0.000100 [2022-12-09 10:54:49,641] [ TRAIN] - Epoch=11/20, Step=100/106 loss=0.0591 acc=0.9875 lr=0.000100 [2022-12-09 10:54:49,641] [ TRAIN] - Epoch=11/20, Step=100/106 loss=0.0591 acc=0.9875 lr=0.000100 [2022-12-09 10:54:55,524] [ TRAIN] - Epoch=12/20, Step=10/106 loss=0.0432 acc=0.9938 lr=0.000100 [2022-12-09 10:54:55,524] [ TRAIN] - Epoch=12/20, Step=10/106 loss=0.0432 acc=0.9938 lr=0.000100 [2022-12-09 10:54:59,176] [ TRAIN] - Epoch=12/20, Step=20/106 loss=0.1412 acc=0.9625 lr=0.000100 [2022-12-09 10:54:59,176] [ TRAIN] - Epoch=12/20, Step=20/106 loss=0.1412 acc=0.9625 lr=0.000100 [2022-12-09 10:55:02,828] [ TRAIN] - Epoch=12/20, Step=30/106 loss=0.1011 acc=0.9750 lr=0.000100 [2022-12-09 10:55:02,828] [ TRAIN] - Epoch=12/20, Step=30/106 loss=0.1011 acc=0.9750 lr=0.000100 [2022-12-09 10:55:06,469] [ TRAIN] - Epoch=12/20, Step=40/106 loss=0.1249 acc=0.9625 lr=0.000100 [2022-12-09 10:55:06,469] [ TRAIN] - Epoch=12/20, Step=40/106 loss=0.1249 acc=0.9625 lr=0.000100 [2022-12-09 10:55:10,142] [ TRAIN] - Epoch=12/20, Step=50/106 loss=0.0641 acc=0.9812 lr=0.000100 [2022-12-09 10:55:10,142] [ TRAIN] - Epoch=12/20, Step=50/106 loss=0.0641 acc=0.9812 lr=0.000100 [2022-12-09 10:55:13,810] [ TRAIN] - Epoch=12/20, Step=60/106 loss=0.1327 acc=0.9500 lr=0.000100 [2022-12-09 10:55:13,810] [ TRAIN] - Epoch=12/20, Step=60/106 loss=0.1327 acc=0.9500 lr=0.000100 [2022-12-09 10:55:17,438] [ TRAIN] - Epoch=12/20, Step=70/106 loss=0.1001 acc=0.9688 lr=0.000100 [2022-12-09 10:55:17,438] [ TRAIN] - Epoch=12/20, Step=70/106 loss=0.1001 acc=0.9688 lr=0.000100 [2022-12-09 10:55:21,100] [ TRAIN] - Epoch=12/20, Step=80/106 loss=0.1714 acc=0.9437 lr=0.000100 [2022-12-09 10:55:21,100] [ TRAIN] - Epoch=12/20, Step=80/106 loss=0.1714 acc=0.9437 lr=0.000100 [2022-12-09 10:55:24,746] [ TRAIN] - Epoch=12/20, Step=90/106 loss=0.1120 acc=0.9625 lr=0.000100 [2022-12-09 10:55:24,746] [ TRAIN] - Epoch=12/20, Step=90/106 loss=0.1120 acc=0.9625 lr=0.000100 [2022-12-09 10:55:28,375] [ TRAIN] - Epoch=12/20, Step=100/106 loss=0.0962 acc=0.9812 lr=0.000100 [2022-12-09 10:55:28,375] [ TRAIN] - Epoch=12/20, Step=100/106 loss=0.0962 acc=0.9812 lr=0.000100 [2022-12-09 10:55:34,449] [ TRAIN] - Epoch=13/20, Step=10/106 loss=0.0767 acc=0.9750 lr=0.000100 [2022-12-09 10:55:34,449] [ TRAIN] - Epoch=13/20, Step=10/106 loss=0.0767 acc=0.9750 lr=0.000100 [2022-12-09 10:55:38,237] [ TRAIN] - Epoch=13/20, Step=20/106 loss=0.0870 acc=0.9688 lr=0.000100 [2022-12-09 10:55:38,237] [ TRAIN] - Epoch=13/20, Step=20/106 loss=0.0870 acc=0.9688 lr=0.000100 [2022-12-09 10:55:41,867] [ TRAIN] - Epoch=13/20, Step=30/106 loss=0.0764 acc=0.9875 lr=0.000100 [2022-12-09 10:55:41,867] [ TRAIN] - Epoch=13/20, Step=30/106 loss=0.0764 acc=0.9875 lr=0.000100 [2022-12-09 10:55:45,534] [ TRAIN] - Epoch=13/20, Step=40/106 loss=0.0764 acc=0.9750 lr=0.000100 [2022-12-09 10:55:45,534] [ TRAIN] - Epoch=13/20, Step=40/106 loss=0.0764 acc=0.9750 lr=0.000100 [2022-12-09 10:55:49,197] [ TRAIN] - Epoch=13/20, Step=50/106 loss=0.0581 acc=0.9875 lr=0.000100 [2022-12-09 10:55:49,197] [ TRAIN] - Epoch=13/20, Step=50/106 loss=0.0581 acc=0.9875 lr=0.000100 [2022-12-09 10:55:52,866] [ TRAIN] - Epoch=13/20, Step=60/106 loss=0.0682 acc=0.9812 lr=0.000100 [2022-12-09 10:55:52,866] [ TRAIN] - Epoch=13/20, Step=60/106 loss=0.0682 acc=0.9812 lr=0.000100 [2022-12-09 10:55:56,541] [ TRAIN] - Epoch=13/20, Step=70/106 loss=0.0859 acc=0.9688 lr=0.000100 [2022-12-09 10:55:56,541] [ TRAIN] - Epoch=13/20, Step=70/106 loss=0.0859 acc=0.9688 lr=0.000100 [2022-12-09 10:56:00,342] [ TRAIN] - Epoch=13/20, Step=80/106 loss=0.0916 acc=0.9812 lr=0.000100 [2022-12-09 10:56:00,342] [ TRAIN] - Epoch=13/20, Step=80/106 loss=0.0916 acc=0.9812 lr=0.000100 [2022-12-09 10:56:04,092] [ TRAIN] - Epoch=13/20, Step=90/106 loss=0.0836 acc=0.9688 lr=0.000100 [2022-12-09 10:56:04,092] [ TRAIN] - Epoch=13/20, Step=90/106 loss=0.0836 acc=0.9688 lr=0.000100 [2022-12-09 10:56:07,750] [ TRAIN] - Epoch=13/20, Step=100/106 loss=0.1444 acc=0.9437 lr=0.000100 [2022-12-09 10:56:07,750] [ TRAIN] - Epoch=13/20, Step=100/106 loss=0.1444 acc=0.9437 lr=0.000100 [2022-12-09 10:56:13,580] [ TRAIN] - Epoch=14/20, Step=10/106 loss=0.0715 acc=0.9688 lr=0.000100 [2022-12-09 10:56:13,580] [ TRAIN] - Epoch=14/20, Step=10/106 loss=0.0715 acc=0.9688 lr=0.000100 [2022-12-09 10:56:17,233] [ TRAIN] - Epoch=14/20, Step=20/106 loss=0.0843 acc=0.9625 lr=0.000100 [2022-12-09 10:56:17,233] [ TRAIN] - Epoch=14/20, Step=20/106 loss=0.0843 acc=0.9625 lr=0.000100 [2022-12-09 10:56:20,887] [ TRAIN] - Epoch=14/20, Step=30/106 loss=0.0545 acc=0.9875 lr=0.000100 [2022-12-09 10:56:20,887] [ TRAIN] - Epoch=14/20, Step=30/106 loss=0.0545 acc=0.9875 lr=0.000100 [2022-12-09 10:56:24,543] [ TRAIN] - Epoch=14/20, Step=40/106 loss=0.0640 acc=0.9938 lr=0.000100 [2022-12-09 10:56:24,543] [ TRAIN] - Epoch=14/20, Step=40/106 loss=0.0640 acc=0.9938 lr=0.000100 [2022-12-09 10:56:28,166] [ TRAIN] - Epoch=14/20, Step=50/106 loss=0.1029 acc=0.9750 lr=0.000100 [2022-12-09 10:56:28,166] [ TRAIN] - Epoch=14/20, Step=50/106 loss=0.1029 acc=0.9750 lr=0.000100 [2022-12-09 10:56:31,796] [ TRAIN] - Epoch=14/20, Step=60/106 loss=0.1117 acc=0.9437 lr=0.000100 [2022-12-09 10:56:31,796] [ TRAIN] - Epoch=14/20, Step=60/106 loss=0.1117 acc=0.9437 lr=0.000100 [2022-12-09 10:56:35,436] [ TRAIN] - Epoch=14/20, Step=70/106 loss=0.0733 acc=0.9812 lr=0.000100 [2022-12-09 10:56:35,436] [ TRAIN] - Epoch=14/20, Step=70/106 loss=0.0733 acc=0.9812 lr=0.000100 [2022-12-09 10:56:39,098] [ TRAIN] - Epoch=14/20, Step=80/106 loss=0.1009 acc=0.9688 lr=0.000100 [2022-12-09 10:56:39,098] [ TRAIN] - Epoch=14/20, Step=80/106 loss=0.1009 acc=0.9688 lr=0.000100 [2022-12-09 10:56:42,755] [ TRAIN] - Epoch=14/20, Step=90/106 loss=0.0828 acc=0.9812 lr=0.000100 [2022-12-09 10:56:42,755] [ TRAIN] - Epoch=14/20, Step=90/106 loss=0.0828 acc=0.9812 lr=0.000100 [2022-12-09 10:56:46,427] [ TRAIN] - Epoch=14/20, Step=100/106 loss=0.0559 acc=0.9938 lr=0.000100 [2022-12-09 10:56:46,427] [ TRAIN] - Epoch=14/20, Step=100/106 loss=0.0559 acc=0.9938 lr=0.000100 [2022-12-09 10:56:52,284] [ TRAIN] - Epoch=15/20, Step=10/106 loss=0.0953 acc=0.9563 lr=0.000100 [2022-12-09 10:56:52,284] [ TRAIN] - Epoch=15/20, Step=10/106 loss=0.0953 acc=0.9563 lr=0.000100 [2022-12-09 10:56:56,032] [ TRAIN] - Epoch=15/20, Step=20/106 loss=0.0524 acc=0.9938 lr=0.000100 [2022-12-09 10:56:56,032] [ TRAIN] - Epoch=15/20, Step=20/106 loss=0.0524 acc=0.9938 lr=0.000100 [2022-12-09 10:56:59,818] [ TRAIN] - Epoch=15/20, Step=30/106 loss=0.1065 acc=0.9688 lr=0.000100 [2022-12-09 10:56:59,818] [ TRAIN] - Epoch=15/20, Step=30/106 loss=0.1065 acc=0.9688 lr=0.000100 [2022-12-09 10:57:03,523] [ TRAIN] - Epoch=15/20, Step=40/106 loss=0.0990 acc=0.9750 lr=0.000100 [2022-12-09 10:57:03,523] [ TRAIN] - Epoch=15/20, Step=40/106 loss=0.0990 acc=0.9750 lr=0.000100 [2022-12-09 10:57:07,234] [ TRAIN] - Epoch=15/20, Step=50/106 loss=0.1010 acc=0.9688 lr=0.000100 [2022-12-09 10:57:07,234] [ TRAIN] - Epoch=15/20, Step=50/106 loss=0.1010 acc=0.9688 lr=0.000100 [2022-12-09 10:57:10,922] [ TRAIN] - Epoch=15/20, Step=60/106 loss=0.1451 acc=0.9500 lr=0.000100 [2022-12-09 10:57:10,922] [ TRAIN] - Epoch=15/20, Step=60/106 loss=0.1451 acc=0.9500 lr=0.000100 [2022-12-09 10:57:14,589] [ TRAIN] - Epoch=15/20, Step=70/106 loss=0.0984 acc=0.9563 lr=0.000100 [2022-12-09 10:57:14,589] [ TRAIN] - Epoch=15/20, Step=70/106 loss=0.0984 acc=0.9563 lr=0.000100 [2022-12-09 10:57:18,250] [ TRAIN] - Epoch=15/20, Step=80/106 loss=0.0711 acc=0.9750 lr=0.000100 [2022-12-09 10:57:18,250] [ TRAIN] - Epoch=15/20, Step=80/106 loss=0.0711 acc=0.9750 lr=0.000100 [2022-12-09 10:57:21,896] [ TRAIN] - Epoch=15/20, Step=90/106 loss=0.0600 acc=0.9875 lr=0.000100 [2022-12-09 10:57:21,896] [ TRAIN] - Epoch=15/20, Step=90/106 loss=0.0600 acc=0.9875 lr=0.000100 [2022-12-09 10:57:25,565] [ TRAIN] - Epoch=15/20, Step=100/106 loss=0.0791 acc=0.9812 lr=0.000100 [2022-12-09 10:57:25,565] [ TRAIN] - Epoch=15/20, Step=100/106 loss=0.0791 acc=0.9812 lr=0.000100 [2022-12-09 10:57:31,412] [ TRAIN] - Epoch=16/20, Step=10/106 loss=0.0666 acc=0.9812 lr=0.000100 [2022-12-09 10:57:31,412] [ TRAIN] - Epoch=16/20, Step=10/106 loss=0.0666 acc=0.9812 lr=0.000100 [2022-12-09 10:57:35,073] [ TRAIN] - Epoch=16/20, Step=20/106 loss=0.0831 acc=0.9625 lr=0.000100 [2022-12-09 10:57:35,073] [ TRAIN] - Epoch=16/20, Step=20/106 loss=0.0831 acc=0.9625 lr=0.000100 [2022-12-09 10:57:38,734] [ TRAIN] - Epoch=16/20, Step=30/106 loss=0.0837 acc=0.9750 lr=0.000100 [2022-12-09 10:57:38,734] [ TRAIN] - Epoch=16/20, Step=30/106 loss=0.0837 acc=0.9750 lr=0.000100 [2022-12-09 10:57:42,438] [ TRAIN] - Epoch=16/20, Step=40/106 loss=0.0898 acc=0.9750 lr=0.000100 [2022-12-09 10:57:42,438] [ TRAIN] - Epoch=16/20, Step=40/106 loss=0.0898 acc=0.9750 lr=0.000100 [2022-12-09 10:57:46,095] [ TRAIN] - Epoch=16/20, Step=50/106 loss=0.0742 acc=0.9625 lr=0.000100 [2022-12-09 10:57:46,095] [ TRAIN] - Epoch=16/20, Step=50/106 loss=0.0742 acc=0.9625 lr=0.000100 [2022-12-09 10:57:49,746] [ TRAIN] - Epoch=16/20, Step=60/106 loss=0.0457 acc=0.9875 lr=0.000100 [2022-12-09 10:57:49,746] [ TRAIN] - Epoch=16/20, Step=60/106 loss=0.0457 acc=0.9875 lr=0.000100 [2022-12-09 10:57:53,403] [ TRAIN] - Epoch=16/20, Step=70/106 loss=0.0883 acc=0.9750 lr=0.000100 [2022-12-09 10:57:53,403] [ TRAIN] - Epoch=16/20, Step=70/106 loss=0.0883 acc=0.9750 lr=0.000100 [2022-12-09 10:57:57,068] [ TRAIN] - Epoch=16/20, Step=80/106 loss=0.1018 acc=0.9688 lr=0.000100 [2022-12-09 10:57:57,068] [ TRAIN] - Epoch=16/20, Step=80/106 loss=0.1018 acc=0.9688 lr=0.000100 [2022-12-09 10:58:00,725] [ TRAIN] - Epoch=16/20, Step=90/106 loss=0.0537 acc=0.9812 lr=0.000100 [2022-12-09 10:58:00,725] [ TRAIN] - Epoch=16/20, Step=90/106 loss=0.0537 acc=0.9812 lr=0.000100 [2022-12-09 10:58:04,388] [ TRAIN] - Epoch=16/20, Step=100/106 loss=0.1276 acc=0.9563 lr=0.000100 [2022-12-09 10:58:04,388] [ TRAIN] - Epoch=16/20, Step=100/106 loss=0.1276 acc=0.9563 lr=0.000100 [2022-12-09 10:58:10,239] [ TRAIN] - Epoch=17/20, Step=10/106 loss=0.0659 acc=0.9750 lr=0.000100 [2022-12-09 10:58:10,239] [ TRAIN] - Epoch=17/20, Step=10/106 loss=0.0659 acc=0.9750 lr=0.000100 [2022-12-09 10:58:13,894] [ TRAIN] - Epoch=17/20, Step=20/106 loss=0.0578 acc=0.9875 lr=0.000100 [2022-12-09 10:58:13,894] [ TRAIN] - Epoch=17/20, Step=20/106 loss=0.0578 acc=0.9875 lr=0.000100 [2022-12-09 10:58:17,536] [ TRAIN] - Epoch=17/20, Step=30/106 loss=0.0634 acc=0.9750 lr=0.000100 [2022-12-09 10:58:17,536] [ TRAIN] - Epoch=17/20, Step=30/106 loss=0.0634 acc=0.9750 lr=0.000100 [2022-12-09 10:58:21,169] [ TRAIN] - Epoch=17/20, Step=40/106 loss=0.0719 acc=0.9875 lr=0.000100 [2022-12-09 10:58:21,169] [ TRAIN] - Epoch=17/20, Step=40/106 loss=0.0719 acc=0.9875 lr=0.000100 [2022-12-09 10:58:24,832] [ TRAIN] - Epoch=17/20, Step=50/106 loss=0.0997 acc=0.9688 lr=0.000100 [2022-12-09 10:58:24,832] [ TRAIN] - Epoch=17/20, Step=50/106 loss=0.0997 acc=0.9688 lr=0.000100 [2022-12-09 10:58:28,476] [ TRAIN] - Epoch=17/20, Step=60/106 loss=0.0790 acc=0.9563 lr=0.000100 [2022-12-09 10:58:28,476] [ TRAIN] - Epoch=17/20, Step=60/106 loss=0.0790 acc=0.9563 lr=0.000100 [2022-12-09 10:58:32,124] [ TRAIN] - Epoch=17/20, Step=70/106 loss=0.0944 acc=0.9750 lr=0.000100 [2022-12-09 10:58:32,124] [ TRAIN] - Epoch=17/20, Step=70/106 loss=0.0944 acc=0.9750 lr=0.000100 [2022-12-09 10:58:35,772] [ TRAIN] - Epoch=17/20, Step=80/106 loss=0.0771 acc=0.9688 lr=0.000100 [2022-12-09 10:58:35,772] [ TRAIN] - Epoch=17/20, Step=80/106 loss=0.0771 acc=0.9688 lr=0.000100 [2022-12-09 10:58:39,414] [ TRAIN] - Epoch=17/20, Step=90/106 loss=0.0856 acc=0.9750 lr=0.000100 [2022-12-09 10:58:39,414] [ TRAIN] - Epoch=17/20, Step=90/106 loss=0.0856 acc=0.9750 lr=0.000100 [2022-12-09 10:58:43,052] [ TRAIN] - Epoch=17/20, Step=100/106 loss=0.0849 acc=0.9812 lr=0.000100 [2022-12-09 10:58:43,052] [ TRAIN] - Epoch=17/20, Step=100/106 loss=0.0849 acc=0.9812 lr=0.000100 [2022-12-09 10:58:48,902] [ TRAIN] - Epoch=18/20, Step=10/106 loss=0.0497 acc=0.9812 lr=0.000100 [2022-12-09 10:58:48,902] [ TRAIN] - Epoch=18/20, Step=10/106 loss=0.0497 acc=0.9812 lr=0.000100 [2022-12-09 10:58:52,567] [ TRAIN] - Epoch=18/20, Step=20/106 loss=0.0699 acc=0.9750 lr=0.000100 [2022-12-09 10:58:52,567] [ TRAIN] - Epoch=18/20, Step=20/106 loss=0.0699 acc=0.9750 lr=0.000100 [2022-12-09 10:58:56,265] [ TRAIN] - Epoch=18/20, Step=30/106 loss=0.0653 acc=0.9750 lr=0.000100 [2022-12-09 10:58:56,265] [ TRAIN] - Epoch=18/20, Step=30/106 loss=0.0653 acc=0.9750 lr=0.000100 [2022-12-09 10:58:59,902] [ TRAIN] - Epoch=18/20, Step=40/106 loss=0.0837 acc=0.9625 lr=0.000100 [2022-12-09 10:58:59,902] [ TRAIN] - Epoch=18/20, Step=40/106 loss=0.0837 acc=0.9625 lr=0.000100 [2022-12-09 10:59:03,541] [ TRAIN] - Epoch=18/20, Step=50/106 loss=0.0512 acc=0.9875 lr=0.000100 [2022-12-09 10:59:03,541] [ TRAIN] - Epoch=18/20, Step=50/106 loss=0.0512 acc=0.9875 lr=0.000100 [2022-12-09 10:59:07,183] [ TRAIN] - Epoch=18/20, Step=60/106 loss=0.0431 acc=0.9875 lr=0.000100 [2022-12-09 10:59:07,183] [ TRAIN] - Epoch=18/20, Step=60/106 loss=0.0431 acc=0.9875 lr=0.000100 [2022-12-09 10:59:10,812] [ TRAIN] - Epoch=18/20, Step=70/106 loss=0.0544 acc=0.9938 lr=0.000100 [2022-12-09 10:59:10,812] [ TRAIN] - Epoch=18/20, Step=70/106 loss=0.0544 acc=0.9938 lr=0.000100 [2022-12-09 10:59:14,453] [ TRAIN] - Epoch=18/20, Step=80/106 loss=0.0470 acc=0.9812 lr=0.000100 [2022-12-09 10:59:14,453] [ TRAIN] - Epoch=18/20, Step=80/106 loss=0.0470 acc=0.9812 lr=0.000100 [2022-12-09 10:59:18,164] [ TRAIN] - Epoch=18/20, Step=90/106 loss=0.0549 acc=0.9875 lr=0.000100 [2022-12-09 10:59:18,164] [ TRAIN] - Epoch=18/20, Step=90/106 loss=0.0549 acc=0.9875 lr=0.000100 [2022-12-09 10:59:21,852] [ TRAIN] - Epoch=18/20, Step=100/106 loss=0.1010 acc=0.9625 lr=0.000100 [2022-12-09 10:59:21,852] [ TRAIN] - Epoch=18/20, Step=100/106 loss=0.1010 acc=0.9625 lr=0.000100 [2022-12-09 10:59:27,718] [ TRAIN] - Epoch=19/20, Step=10/106 loss=0.0494 acc=0.9812 lr=0.000100 [2022-12-09 10:59:27,718] [ TRAIN] - Epoch=19/20, Step=10/106 loss=0.0494 acc=0.9812 lr=0.000100 [2022-12-09 10:59:31,355] [ TRAIN] - Epoch=19/20, Step=20/106 loss=0.0523 acc=0.9812 lr=0.000100 [2022-12-09 10:59:31,355] [ TRAIN] - Epoch=19/20, Step=20/106 loss=0.0523 acc=0.9812 lr=0.000100 [2022-12-09 10:59:35,039] [ TRAIN] - Epoch=19/20, Step=30/106 loss=0.0981 acc=0.9688 lr=0.000100 [2022-12-09 10:59:35,039] [ TRAIN] - Epoch=19/20, Step=30/106 loss=0.0981 acc=0.9688 lr=0.000100 [2022-12-09 10:59:38,723] [ TRAIN] - Epoch=19/20, Step=40/106 loss=0.0339 acc=0.9875 lr=0.000100 [2022-12-09 10:59:38,723] [ TRAIN] - Epoch=19/20, Step=40/106 loss=0.0339 acc=0.9875 lr=0.000100 [2022-12-09 10:59:42,485] [ TRAIN] - Epoch=19/20, Step=50/106 loss=0.1035 acc=0.9688 lr=0.000100 [2022-12-09 10:59:42,485] [ TRAIN] - Epoch=19/20, Step=50/106 loss=0.1035 acc=0.9688 lr=0.000100 [2022-12-09 10:59:46,120] [ TRAIN] - Epoch=19/20, Step=60/106 loss=0.0300 acc=0.9875 lr=0.000100 [2022-12-09 10:59:46,120] [ TRAIN] - Epoch=19/20, Step=60/106 loss=0.0300 acc=0.9875 lr=0.000100 [2022-12-09 10:59:49,774] [ TRAIN] - Epoch=19/20, Step=70/106 loss=0.0608 acc=0.9812 lr=0.000100 [2022-12-09 10:59:49,774] [ TRAIN] - Epoch=19/20, Step=70/106 loss=0.0608 acc=0.9812 lr=0.000100 [2022-12-09 10:59:53,436] [ TRAIN] - Epoch=19/20, Step=80/106 loss=0.1034 acc=0.9750 lr=0.000100 [2022-12-09 10:59:53,436] [ TRAIN] - Epoch=19/20, Step=80/106 loss=0.1034 acc=0.9750 lr=0.000100 [2022-12-09 10:59:57,103] [ TRAIN] - Epoch=19/20, Step=90/106 loss=0.0588 acc=0.9875 lr=0.000100 [2022-12-09 10:59:57,103] [ TRAIN] - Epoch=19/20, Step=90/106 loss=0.0588 acc=0.9875 lr=0.000100 [2022-12-09 11:00:00,748] [ TRAIN] - Epoch=19/20, Step=100/106 loss=0.0392 acc=0.9875 lr=0.000100 [2022-12-09 11:00:00,748] [ TRAIN] - Epoch=19/20, Step=100/106 loss=0.0392 acc=0.9875 lr=0.000100 [2022-12-09 11:00:06,633] [ TRAIN] - Epoch=20/20, Step=10/106 loss=0.0636 acc=0.9812 lr=0.000100 [2022-12-09 11:00:06,633] [ TRAIN] - Epoch=20/20, Step=10/106 loss=0.0636 acc=0.9812 lr=0.000100 [2022-12-09 11:00:10,284] [ TRAIN] - Epoch=20/20, Step=20/106 loss=0.0696 acc=0.9812 lr=0.000100 [2022-12-09 11:00:10,284] [ TRAIN] - Epoch=20/20, Step=20/106 loss=0.0696 acc=0.9812 lr=0.000100 [2022-12-09 11:00:13,951] [ TRAIN] - Epoch=20/20, Step=30/106 loss=0.0273 acc=0.9938 lr=0.000100 [2022-12-09 11:00:13,951] [ TRAIN] - Epoch=20/20, Step=30/106 loss=0.0273 acc=0.9938 lr=0.000100 [2022-12-09 11:00:17,617] [ TRAIN] - Epoch=20/20, Step=40/106 loss=0.0213 acc=0.9938 lr=0.000100 [2022-12-09 11:00:17,617] [ TRAIN] - Epoch=20/20, Step=40/106 loss=0.0213 acc=0.9938 lr=0.000100 [2022-12-09 11:00:21,271] [ TRAIN] - Epoch=20/20, Step=50/106 loss=0.0646 acc=0.9688 lr=0.000100 [2022-12-09 11:00:21,271] [ TRAIN] - Epoch=20/20, Step=50/106 loss=0.0646 acc=0.9688 lr=0.000100 [2022-12-09 11:00:24,927] [ TRAIN] - Epoch=20/20, Step=60/106 loss=0.0503 acc=0.9875 lr=0.000100 [2022-12-09 11:00:24,927] [ TRAIN] - Epoch=20/20, Step=60/106 loss=0.0503 acc=0.9875 lr=0.000100 [2022-12-09 11:00:28,632] [ TRAIN] - Epoch=20/20, Step=70/106 loss=0.0859 acc=0.9812 lr=0.000100 [2022-12-09 11:00:28,632] [ TRAIN] - Epoch=20/20, Step=70/106 loss=0.0859 acc=0.9812 lr=0.000100 [2022-12-09 11:00:32,486] [ TRAIN] - Epoch=20/20, Step=80/106 loss=0.0532 acc=0.9750 lr=0.000100 [2022-12-09 11:00:32,486] [ TRAIN] - Epoch=20/20, Step=80/106 loss=0.0532 acc=0.9750 lr=0.000100 [2022-12-09 11:00:36,140] [ TRAIN] - Epoch=20/20, Step=90/106 loss=0.0471 acc=0.9938 lr=0.000100 [2022-12-09 11:00:36,140] [ TRAIN] - Epoch=20/20, Step=90/106 loss=0.0471 acc=0.9938 lr=0.000100 [2022-12-09 11:00:39,802] [ TRAIN] - Epoch=20/20, Step=100/106 loss=0.0567 acc=0.9875 lr=0.000100 [2022-12-09 11:00:39,802] [ TRAIN] - Epoch=20/20, Step=100/106 loss=0.0567 acc=0.9875 lr=0.000100 [2022-12-09 11:00:41,874] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 11:00:41,987] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 11:00:42,100] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 11:00:42,212] [ INFO] - Evaluation on validation dataset: - - Evaluation on validation dataset: - [2022-12-09 11:00:42,324] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 11:00:42,434] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 11:00:42,546] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 11:00:42,659] [ INFO] - Evaluation on validation dataset: - - Evaluation on validation dataset: - [2022-12-09 11:00:42,773] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 11:00:42,886] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 11:00:42,998] [ INFO] - Evaluation on validation dataset: / - Evaluation on validation dataset: / [2022-12-09 11:00:43,109] [ INFO] - Evaluation on validation dataset: - - Evaluation on validation dataset: - [2022-12-09 11:00:43,224] [ INFO] - Evaluation on validation dataset: \ - Evaluation on validation dataset: \ [2022-12-09 11:00:43,335] [ INFO] - Evaluation on validation dataset: | - Evaluation on validation dataset: | [2022-12-09 11:00:43,348] [ EVAL] - [Evaluation result] dev_acc=1.0000 [2022-12-09 11:00:43,348] [ EVAL] - [Evaluation result] dev_acc=1.0000
可以看到,经过20轮训练,验证准确率已经达到100%。下面,我们保存Layer参数和优化器参数:
# 保存Layer参数
paddle.save(model.state_dict(), "linear_net.pdparams")
# 保存优化器参数
paddle.save(optimizer.state_dict(), "adam.pdopt")
# 保存检查点checkpoint信息
# paddle.save(final_checkpoint, "final_checkpoint.pkl")
执行预测,获取 Top K 分类结果:
label_list = [] with open("/home/aistudio/dataset/labels.txt","r") as f: lines = f.read() # print(lines) label_list= lines.split("\n") top_k = 10 wav_file = '/home/aistudio/dataset/train_sample/soup/BXT66GMTWP.wav' waveform, sr = load(wav_file, sr=sr) feature_extractor = LogMelSpectrogram( sr=sr, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window='hann', f_min=f_min, f_max=f_max, n_mels=64) feats = feature_extractor(paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0))) feats = paddle.transpose(feats, [0, 2, 1]) # [B, N, T] -> [B, T, N] logits = model(feats) probs = nn.functional.softmax(logits, axis=1).numpy() sorted_indices = probs[0].argsort() msg = f'[{wav_file}]\n' for idx in sorted_indices[-1:-top_k-1:-1]: # msg += f'{ESC50.label_list[idx]}: {probs[0][idx]:.5f}\n' msg += f'{idx}: {probs[0][idx]:.5f}\n' print(msg) # print(label_list) print("result:",label_list[sorted_indices[-1]])
[/home/aistudio/dataset/train_sample/soup/BXT66GMTWP.wav]
16: 0.99852
5: 0.00100
11: 0.00023
13: 0.00013
9: 0.00004
1: 0.00004
12: 0.00001
6: 0.00001
19: 0.00001
14: 0.00001
result: soup
n sorted_indices[-1:-top_k-1:-1]:
# msg += f’{ESC50.label_list[idx]}: {probs[0][idx]:.5f}\n’
msg += f’{idx}: {probs[0][idx]:.5f}\n’
print(msg)
print(“result:”,label_list[sorted_indices[-1]])
[/home/aistudio/dataset/train_sample/soup/BXT66GMTWP.wav] 16: 0.99852 5: 0.00100 11: 0.00023 13: 0.00013 9: 0.00004 1: 0.00004 12: 0.00001 6: 0.00001 19: 0.00001 14: 0.00001 result: soup ## 4.6 后续展望 通过对随机抽取的数据进行多次推理测试,预测准确,效果令人满意。后面再考虑针对语音的数据增强等技术应用实践和效果评估。 # **关于作者** >- [个人主页](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/1032881) >- 感兴趣的方向为:OCR,目标检测,图像分类,视频动作序列识别,图像分割等。 >- 不定期追踪新的技术并加以学习实践。 >- 个人荣誉:曾获飞桨AI达人创造营优秀学员奖 >- 欢迎大家有问题留言交流学习,共同进步成长。 此文章为搬运 [原项目链接](https://aistudio.baidu.com/aistudio/projectdetail/5332228)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。