赞
踩
import numpy as np import matplotlib.pyplot as plt import torch import torchvision #构建展示图像的函数 def imshow(img): img = img/2+0.5 #固定格式 npimg = img.numpy() #将图像tensor类型转换为numpy类型才能显示 plt.imshow(np.transpose(npimg,(1,2,0))) plt.show() #从数据地带其中读取一张图像 dataiter = iter(trainloader) images,labels = dataiter.next() # #展示图像 # imshow(torchvision.utils.make_grid(images)) # #打印标签 # print(''.join('%5s'% classes[labels[j]] for j in range(4))) import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() #定义两个卷积层 self.conv1 = nn.Conv2d(3,6,5) self.vonv2 = nn.Conv2d(6,16,5) #定义两个池化层 self.pool = nn.MaxPool2d(2,2) #定义三个全连接层 self.fc1 = nn.Linear(16*5*5,120) self.fc2 = nn.Linear(120,84) self.fc3 = nn.Linear(84,10) def forward(self,x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) #变换x的形状以适配全连接层的输入 x = x.view(-1,16*5*5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() #print(net) #定义损失函数,选用交叉熵损失函数 import torch.optim as optim criterion = nn.CrossEntropyLoss() #定义优化器,选用随机梯度下降优化器 momentum:动量 optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9) #编写训练代码 for epoch in range(2): running_loss = 0.0 #按批次迭代训练模型 for i,data enumerate(trainloder,0): #从data中取出含有输入图像的张量inputs,标签张量labels inputs,labels = data #第一步将梯度清零 optimizer.zero_grad() #第二步将输入图像进入网络中,得到输出张量 outputs = net(inputs) #计算损失值 loss = criterion(outputs,labels) #进行反向传播和梯度更新 loss.backward() optimizer.step() #打印训练的信息 running_loss+=loss.item() if(i+1)%2000==0: print('[%d,%5d] loss:%.3f'%(epoch+1,i+1,running_loss/2000)) running_loss=0.0 print('Finished Training.') #设定模型的保存位置 PATH = '。/cifar_net.pth' #保存模型的状态字典 torch.save(net.state_dict(),PATH) #在测试集中取出一个批次的数据,做图像和标签的展示 dataiter = iter(testloader) images,label = dataiter.next() #打印原始图像 imshow(torchvision.utils.make_grid(images)) #打印真实的标签 print('GroundTruth:',''.join('%5s'% classes[labels[j]] for j in range(4))) #加载模型参数,在测试阶段 net.load_state_dict(torch.load(PATH)) #利用模型对图像进行预测 outputs = net(images) #模型有10个类别的输出,选区其中概率最大的那个类型为预测值 _,predicted = torch.max(outputs,1) #打印预测标签 print('GroundTruth:',''.join('%5s'% classes[predicted[j]] for j in range(4))) #在整个测试集上测试模型的准确率 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images,labels = data outputs = net(images) _,predicted = torch.max(outputs.data,1) total+=labels.size(0) correct ++(predicted==labels).sum().item() print('Accuracy of the network on the 10000 test images:%d %%' %(100*correct/total)) #分别测试不同类别的模型准确率 class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images,labels = data outputs = net(images) _,predicted = torch.max(outputs,1) c = (predicted == labels).squeeze() #squeeze 去掉不需要的维度 for i in range(4): label = labels[i] class_correct[label]+=c[i].item() class_total[label]+=1 #打印不同类别的准确率 for i in range(10): print('Accuracy of the &5s :%2d %%' %(classes[i],100*class_correct[i]/class_total[i]))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。