赞
踩
两个有用的工具箱:
help(torch.cuda.is_available) # 对函数进行操作
唤醒指定的python运行环境的命令:
conda activate 环境的名称
Dataset 和 Dataloader
Dataset:提供一种方式去获取数据及其label
Dataloader :为后面的网络提供不同的数据形式
- from torch.utils.data import Dataset #Dataset数据处理的包
- from PIL import Image
- import os
-
- #定义数据处理的类
- class MyData(Dataset):
-
- #数据地址处理方法
- def __init__(self,root_dir,label_dir):
- self.root_dir = root_dir #读取数据文件的根地址
- self.label_dir = label_dir #读取数据文件的字地址
- self.path = os.path.join(self.root_dir,self.label_dir)# 将根地址和子地址进行拼接
- self.img_path = os.listdir(self.path) #将图片的地址提取出来,并一个个存入到列表中去
-
-
- #提取每一个图片的信息
- def __getitem__(self, idx):
- img_name = self.img_path[idx] #根据序号从列表中找到相应的图片地址
- img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)# 将根地址与图片地址进行拼接
- img = Image.open(img_item_path) #将地址转换为图片的形式
- label = self.label_dir# 读取标签的地址
- return img,label #返回图片和标签
-
- #计算数据集的长度
- def __len__(self):
- return len(self.img_path)
-
- root_dir = "dataset/train"
- ants_label_dir = "ants"
- bees_label_dir = "bees"
- ants_dataset = MyData(root_dir,ants_label_dir)
- bees_dataset = MyData(root_dir,bees_label_dir)
- train_dataset = ants_dataset + bees_dataset
- from torch.utils.tensorboard import SummaryWriter
- from PIL import Image
- import numpy as np
-
- writer = SummaryWriter("logs")
- image_path = "dataset/train/ants/0013035.jpg"
- img_PIL = Image.open(image_path)
- img_array = np.array(img_PIL)
- print(type(img_array))
- print(img_array.shape)
- # writer.add_image("test",img_array,1,dataformats='HWC')# 其中1的作用主要是为了进行步数的设置
- # y = x
- for i in range(100):
- writer.add_scalar("y=2x",3*i,i)
- writer.close()
启动日志的相关命令
tensorboard --logdir=logs --port=6007
下面图片是transform的图解:
- """
- transform的讲解
- """
- from PIL import Image
- from torch.utils.tensorboard import SummaryWriter
- from torchvision import transforms
-
-
- #python的用法 -》 tensor数据类型
- #通过 transform.Totensor去看两个问题
- # 1、transform该如何去使用(python)
- # 2、为什么我们需要tensor数据类型
-
- # 绝对路径:"F:\learn_pytorch\p9_transform.py"
- # 相对路径:"dataset/train/ants/0013035.jpg"
- #为什么不选择使用绝对路径,因为在window系统下,\会被认为是转移字符
-
- img_path = "dataset/train/ants/0013035.jpg"# 读取图片的相对地址
- img_path_abs = "F:\learn_pytorch\p9_transform.py"# 读取图片的绝对地址
- img = Image.open(img_path)# 打开图片
- #print(img)
-
- writer = SummaryWriter("logs") # 创建TensorBoard对象
-
- # 1、transform该如何去使用(python)
- tensor_trans = transforms.ToTensor()# 创建一个tensor_trans的图片类型转换工具的对象
- tensor_img = tensor_trans(img)# 将img转化成tensor的形式
- #print(tensor_img)
-
- writer.add_image("Tensor_img",tensor_img)# 利用TensorBoard展示数据
Python中__call__的用法
- class Person:
- def __call__(self,name):
- print("__call__"+"Hello"+name)
- def hello(self,name):
- print("hello"+name)
-
- person = Person()
-
- person("张三")
-
- person.hello("lisi")
Totensor()的使用
- #Totensor()的使用
- trans_Totensor = transforms.ToTensor()
- img_tensor = trans_Totensor(img)
- writer.add_image('ToTensor',img_tensor)
Normalize()的使用
- print(img_tensor[0][0][0])
- trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
- img_norm = trans_norm(img_tensor)
- print(img_norm[0][0][0])
Resize()的使用
- #Resize()
- print(img.size)
- trans_size = transforms.Resize((512,512))
- # img PIL -> resize ->img_resize PIL
- img_resize = trans_size(img)
- # img_resize PIL -> totensor ->img_resize tensor
- img_resize = trans_Totensor(img_resize)
- writer.add_image('Resize',img_resize,0)
- print(img_resize)
Compose()的使用
- #Compose() -resize -2
- trans_resize_2 = transforms.Resize(512)
- # PIL -> PIL -> tensor
- trans_compose = transforms.Compose([trans_resize_2,trans_Totensor])
- img_resize_2 = trans_compose(img)
- writer.add_image('Compose',img_resize_2)
RandomCrop()的使用
- #RandomCrop()
- trans_random = transforms.RandomCrop((500,20))
-
- trans_compose_2 = transforms.Compose([trans_random,trans_Totensor])
-
- for i in range(10):
- img_crop = trans_compose_2(img)
- writer.add_image('RandomCrop',img_crop,i)
进入pytorch的官网
依次进入到Docs->torchvision->dataset
相关代码:
- import torchvision
- from torch.utils.tensorboard import SummaryWriter
-
- dataset_transform = torchvision.transforms.Compose([
- torchvision.transforms.ToTensor()
- ])
- train_set = torchvision.datasets.(root="./dataset1",train=True,download=True,transform=dataset_transform)#构建训练集
- test_set = torchvision.datasets.CIFAR10(root="./dataset1",train=False,download=True,transform=dataset_transform)#构建测试集
-
- '''
- print(test_set[0])
- print(test_set.classes)
- img,target = test_set[0]
- print(img)
- print(target)
- img.show()
- '''
- # print(test_set[0])
- writer = SummaryWriter('p10')
- # writer.add_image()
- for i in range(10):
- img,target = test_set[i]
- writer.add_image('test_set',img,i)
- writer.close()
-
- import torchvision
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
-
- test_data = torchvision.datasets.CIFAR10(root="./dataset1",train=True,transform=torchvision.transforms.ToTensor(),download=True)
-
- test_loader = DataLoader(dataset=test_data,batch_size=64,shuffle=False,num_workers=0,drop_last=False)
-
- #测试数据集里面的第一章图片及target
- img,target = test_data[0]
- print(img.shape)
- print(target)
-
- writer = SummaryWriter('dataloader')
- for epoch in range(2):#进行两轮
- step = 0
- for data in test_loader:
- imgs,targets = data
- writer.add_images(f"Epoch{epoch}",imgs,step)
- step = step + 1
- # print(imgs.shape)
- # print(target)
- print("读取结束")
- writer.close()
-
- import torch
- from torch import nn
-
-
- class Tudui(nn.Module):
-
- def __init__(self) -> None:
- super().__init__()
-
- def forward(self,input):
- output = input + 1
- return output
-
- tutui = Tudui()
- x = torch.tensor(1.0)
- output = tutui(x)
- print(output)
需要重点学会的是:Conv2d
对应位置相乘,然后加在一起
注意padding填充的全部为0。
需要注意以上的参数的要求:
- import torch
- import torch.nn.functional as F
- #输入
- input = torch.tensor([[1,2,0,3,1],
- [0,1,2,3,1],
- [1,2,1,0,0],
- [5,2,3,1,1],
- [2,1,0,1,1]])
- #卷积核
- kernel = torch.tensor([[1,2,1],
- [0,1,0],
- [2,1,0]])
-
- input = torch.reshape(input,(1,1,5,5))
- kernel = torch.reshape(kernel,(1,1,3,3))
-
- print(input.shape)
- print(kernel.shape)
-
- output1= F.conv2d(input,kernel,stride=1)
- print(output1)
- output2 = F.conv2d(input,kernel,stride=2)
- print(output2)
- output3 = F.conv2d(input,kernel,stride=1,padding=1)
- print(output3)
当out_channel = 2的时候,此时会设置2个卷积核
-
- import torch
- import torchvision
-
- #加载测试集
- from torch import nn
- from torch.nn import Conv2d
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
-
- dataset = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
-
- dataloader = DataLoader(dataset,batch_size=64,num_workers=0)
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
-
- def forward(self,x):
- x = self.conv1(x)
- return x
- tudui = Tudui()
- print(tudui)
-
- writer = SummaryWriter('./logs')
- step = 0
- for data in dataloader:
- imgs,targets = data
- ouput = tudui(imgs)
- print(imgs.shape)
- print(ouput.shape)
- writer.add_images("input",imgs,step)
- ouput = torch.reshape(ouput, (-1, 3, 30, 30)) # ->[xxx,3,30,30],3是通道数减少,使得xxx的batchsize变大
- writer.add_images("ouput",ouput,step)
- step = step + 1
- print("over")
-
- import torch
- from torch import nn
- from torch.nn import MaxPool2d
-
- input = torch.tensor([[1,2,0,3,1],
- [0,1,2,3,1],
- [1,2,1,0,0],
- [5,2,3,1,1],
- [2,1,0,1,1]],dtype=torch.float)
-
- input = torch.reshape(input,(-1,1,5,5))
-
- class Tudui(nn.Module) :
- def __init__(self):
- super(Tudui, self).__init__()
- self.maxpool = MaxPool2d(kernel_size=3,ceil_mode=False)
-
-
-
- def forward(self,input):
- output = self.maxpool(input)
- return output
- tudui = Tudui()
- output = tudui(input)
- print(output)
-
最大池化的作用:就是压缩。
- import torch
- import torchvision
- from torch import nn
- from torch.nn import MaxPool2d
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
-
- dataset = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
-
- dataloader = DataLoader(dataset,batch_size=64,shuffle=True)
- '''
- input = torch.tensor([[1,2,0,3,1],
- [0,1,2,3,1],
- [1,2,1,0,0],
- [5,2,3,1,1],
- [2,1,0,1,1]],dtype=torch.float)
- input = torch.reshape(input,(-1,1,5,5))
- '''
- class Tudui(nn.Module) :
- def __init__(self):
- super(Tudui, self).__init__()
- self.maxpool = MaxPool2d(kernel_size=3,ceil_mode=False)
-
-
-
- def forward(self,input):
- output = self.maxpool(input)
- return output
-
- tudui = Tudui()
- writer = SummaryWriter("logs")
- step = 0
- for data in dataloader:
- imgs,target = data
- writer.add_images("imgs",imgs,step)
- print(imgs.shape)
- output = tudui(imgs)
- writer.add_images("maxpool",output,step)
- print(output.shape)
- step = step + 1
-
- writer.close()
- print("over")
-
- # tudui = Tudui()
- # output = tudui(input)
- # print(output)
-
inplace参数的讲解
- '''
- ReLU
- '''
- import torch
- from torch import nn
- from torch.nn import ReLU
-
- input = torch.tensor([[1,-0.5],
- [-1,3]])
-
- input = torch.reshape(input,(-1,1,2,2))
-
- print(input.shape)
-
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.relu1 = ReLU()
-
- def forward(self,input):
- output = self.relu1(input)
-
- return output
-
- tudui = Tudui()
- output = tudui(input)
- print(output)
-
-
-
- '''
- Sigmoid
- '''
- import torch
- import torchvision.datasets
- from torch import nn
- from torch.nn import ReLU, Sigmoid
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
-
- input = torch.tensor([[1,-0.5],
- [-1,3]])
-
- input = torch.reshape(input,(-1,1,2,2))
-
- print(input.shape)
-
- dataset = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True,
- transform=torchvision.transforms.ToTensor())
- dataloader = DataLoader(dataset,batch_size=64)
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.relu1 = ReLU()
- self.sigmoid1 = Sigmoid()
-
- def forward(self,input):
- output = self.sigmoid1(input)
-
- return output
-
- tudui = Tudui()
-
- writer = SummaryWriter("logs")
- step = 0
- for data in dataloader:
- imgs,targets = data
- print(imgs.shape)
- writer.add_images("imgs",imgs,step)
- output = tudui(imgs)
- print(output.shape)
- writer.add_images("Sigmod",output,step)
-
- writer.close()
-
-
-
线性层
- """
- vgg16
- """
- import torch
- import torchvision.datasets
- from torch import nn
- from torch.nn import Linear
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
-
- dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),
- download=True)
-
- dataloader = DataLoader(dataset,batch_size=64)
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.linear1 = Linear(196608,10)
-
- def forward(self,input):
- output = self.linear1(input)
- return output
-
- tudui = Tudui()
-
- #writer = SummaryWriter("logs")
- #step = 0
-
- for data in dataloader:
- imgs,tragets = data
- print(imgs.shape)
- #writer.add_images("imgs",imgs,step)
- #output = torch.reshape(imgs,(1,1,1,-1))
- output = torch.flatten(imgs)
- print(output.shape)
- output = tudui(output)
- print(output.shape)
- #writer.add_images("linear",output,step)
- #step += 1
-
- #writer.close()
-
-
CIFAR 10 model结构
- import torch
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.tensorboard import SummaryWriter
-
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.conv1 = Conv2d(3,32,5,padding=2)
- self.maxpool1 = MaxPool2d(2)
- self.conv2 = Conv2d(32,32,5,padding=2)
- self.maxpool2 = MaxPool2d(2)
- self.conv3 = Conv2d(32,64,5,padding=2)
- self.maxpool3 = MaxPool2d(2)
- self.flatten = Flatten()
- self.Linear1 = Linear(1024,64)
- self.Linear2 = Linear(64,10)
-
- self.model1 = Sequential(
- Conv2d(3,32,5,padding=2),
- MaxPool2d(2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
- def forward(self,x):
- # x = self.conv1(x)
- # x = self.maxpool1(x)
- # x = self.conv2(x)
- # x = self.maxpool2(x)
- # x = self.conv3(x)
- # x = self.maxpool3(x)
- # x = self.flatten(x)
- # x = self.Linear1(x)
- # x = self.Linear2(x)
- x = self.model1(x)
- return x
-
- tudui = Tudui()
- input = torch.ones((64,3,32,32))
- output = tudui(input)
- print(output)
-
-
- writer = SummaryWriter("logs_seq")
- writer.add_graph(tudui,input)
- writer.close()
- '''
- nn.loss
- '''
-
- import torch
- from torch.nn import L1Loss
-
- inputs = torch.tensor([1,2,3],dtype=torch.float32)
- targets = torch.tensor([1,2,5],dtype=torch.float32)
-
- inputs = torch.reshape(inputs,(1,1,1,3))
- targets = torch.reshape(targets,(1,1,1,3))
-
- loss =L1Loss(reduction='sum')
- result = loss(inputs,targets)
-
- print(result)
- '''
- nn.MSEloss
- '''
-
- import torch
- from torch.nn import L1Loss
- from torch import nn
-
- inputs = torch.tensor([1,2,3],dtype=torch.float32)
- targets = torch.tensor([1,2,5],dtype=torch.float32)
-
- inputs = torch.reshape(inputs,(1,1,1,3))
- targets = torch.reshape(targets,(1,1,1,3))
-
- loss =L1Loss(reduction='sum')
- result = loss(inputs,targets)
-
- loss_mse = nn.MSELoss()
- result_mse = loss_mse(inputs,targets)
-
- print(result)
- print(result_mse)
- '''
- nn.CrossEntropyLoss
- '''
-
- import torch
- from torch.nn import L1Loss
- from torch import nn
-
- inputs = torch.tensor([1,2,3],dtype=torch.float32)
- targets = torch.tensor([1,2,5],dtype=torch.float32)
-
- inputs = torch.reshape(inputs,(1,1,1,3))
- targets = torch.reshape(targets,(1,1,1,3))
-
- loss =L1Loss(reduction='sum')
- result = loss(inputs,targets)
-
- loss_mse = nn.MSELoss()
- result_mse = loss_mse(inputs,targets)
-
- print(result)
- print(result_mse)
-
- x = torch.tensor([0.1,0.2,0.3])
- y = torch.tensor([1])
- x = torch.reshape(x,(1,3))
- loss_cross = nn.CrossEntropyLoss()
- result_cross = loss_cross(x,y)
- print(result_cross)
- import torchvision
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.data import DataLoader
-
- dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),
- download=True)
- dataloader = DataLoader(dataset,batch_size = 1)
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.conv1 = Conv2d(3,32,5,padding=2)
- self.maxpool1 = MaxPool2d(2)
- self.conv2 = Conv2d(32,32,5,padding=2)
- self.maxpool2 = MaxPool2d(2)
- self.conv3 = Conv2d(32,64,5,padding=2)
- self.maxpool3 = MaxPool2d(2)
- self.flatten = Flatten()
- self.Linear1 = Linear(1024,64)
- self.Linear2 = Linear(64,10)
-
- self.model1 = Sequential(
- Conv2d(3,32,5,padding=2),
- MaxPool2d(2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
- def forward(self,x):
- # x = self.conv1(x)
- # x = self.maxpool1(x)
- # x = self.conv2(x)
- # x = self.maxpool2(x)
- # x = self.conv3(x)
- # x = self.maxpool3(x)
- # x = self.flatten(x)
- # x = self.Linear1(x)
- # x = self.Linear2(x)
- x = self.model1(x)
- return x
- loss = nn.CrossEntropyLoss()
- tudui = Tudui()
- for data in dataloader:
- imgs,targets = data
- outputs = tudui(imgs)
- result_loss = loss(outputs,targets)
- result_loss.backward()
- print("ok")
- print(result_loss)
- print(outputs)
- print(targets)
- import torch
- import torchvision
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.data import DataLoader
-
- dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),
- download=True)
- dataloader = DataLoader(dataset,batch_size = 1)
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.conv1 = Conv2d(3,32,5,padding=2)
- self.maxpool1 = MaxPool2d(2)
- self.conv2 = Conv2d(32,32,5,padding=2)
- self.maxpool2 = MaxPool2d(2)
- self.conv3 = Conv2d(32,64,5,padding=2)
- self.maxpool3 = MaxPool2d(2)
- self.flatten = Flatten()
- self.Linear1 = Linear(1024,64)
- self.Linear2 = Linear(64,10)
-
- self.model1 = Sequential(
- Conv2d(3,32,5,padding=2),
- MaxPool2d(2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
- def forward(self,x):
- # x = self.conv1(x)
- # x = self.maxpool1(x)
- # x = self.conv2(x)
- # x = self.maxpool2(x)
- # x = self.conv3(x)
- # x = self.maxpool3(x)
- # x = self.flatten(x)
- # x = self.Linear1(x)
- # x = self.Linear2(x)
- x = self.model1(x)
- return x
- loss = nn.CrossEntropyLoss()
- tudui = Tudui()
- optim = torch.optim.SGD(tudui.parameters(),lr = 0.01,)
- for epoch in range(20):
- running_loss = 0.0
- for data in dataloader:
- imgs,targets = data
- outputs = tudui(imgs)
- result_loss = loss(outputs,targets)# 计算损失
- optim.zero_grad()# 梯度清零
- result_loss.backward()# 反向传播,求出每个参数的梯度
- optim.step() #对权重进行更新
- running_loss = running_loss + result_loss
- print(running_loss)
- import torchvision
-
- # train_data = torchvision.datasets.ImageNet("./dataset",split='train',download=True,
- # transform=torchvision.transforms.ToTensor())
- from torch import nn
-
- vgg16_false = torchvision.models.vgg16(pretrained=False)
- vgg16_true = torchvision.models.vgg16(pretrained=True)
- print("ok")
- print(vgg16_true)
-
-
- train_data = torchvision.datasets.CIFAR10('./data',train=True,transform=torchvision.transforms.ToTensor(),
- download=True)
- # 修改vgg16网络模型的结构
- vgg16_true.classifier.add_module('add_liner',nn.Linear(1000,10))
- print(vgg16_true)
- print(vgg16_false)
- vgg16_false.classifier[6] = nn.Linear(4096,10)
- print(vgg16_false)
自己定义模型
- from torch import nn
-
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.conv1 = nn.Conv2d(3,64,kernel_size=3)
-
- def forward(self,x):
- x = self.conv1(x)
- return x
保存模型
- import torch
- import torchvision
-
- vgg16 = torchvision.models.vgg16(pretrained=False) #加载vgg16初始的模型
-
- #保存方式1
- torch.save(vgg16,"vgg16_method1.pth")
- import torch
- import torchvision
- from torch import nn
- from Tudui import Tudui
- # vgg16 = torchvision.models.vgg16(pretrained=False) #加载vgg16初始的模型
- #
- # #保存方式1 模型的结构+模型的参数
- # torch.save(vgg16,"vgg16_method1.pth")
- #
- # #保存方式2 模型的参数(官方的推荐)保存为字典的形式
- # torch.save(vgg16.state_dict(),"vgg16_method2.pth")
-
- #陷阱
-
- # class Tudui(nn.Module):
- # def __init__(self):
- # super(Tudui, self).__init__()
- # self.conv1 = nn.Conv2d(3,64,kernel_size=3)
- #
- # def forward(self,x):
- # x = self.conv1(x)
- # return x
- tudui = Tudui()
-
- torch.save(tudui,"tudui_method1.pth")
- print("over")
加载模型
- import torch
- import torchvision
-
- vgg16 = torchvision.models.vgg16(pretrained=False) #加载vgg16初始的模型
-
- #保存方式1
- torch.save(vgg16,"vgg16_method1.pth")
- """
- 加载模型
- """
- import torch
- #保存方式1的加载模型的方法
- import torchvision
-
- # model = torch.load("vgg16_method1.pth")
- #print(model)
-
- #方式2的加载模型的方法
- # # model = torch.load("vgg16_method2.pth")
- # print(model)
-
-
-
- vgg16 = torchvision.models.vgg16(pretrained=False)
- vgg16.load_state_dict((torch.load("vgg16_method2.pth")))
- # print(vgg16)
- #陷阱
- model = torch.load("tudui_method1.pth")
- print(model)
定义网络模型Model.py
- #搭建神经网络
- from torch import nn
-
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- #使用序列化的方法更新神经网络的各个层
- self.model = nn.Sequential(
- nn.Conv2d(3,32,kernel_size=5,stride=1,padding=2),
- nn.MaxPool2d(kernel_size=2),
- nn.Conv2d(32,32,kernel_size=5,stride=1,padding=2),
- nn.MaxPool2d(2),
- nn.Conv2d(32,64,kernel_size=5,stride=1,padding=2),
- nn.MaxPool2d(2),
- nn.Flatten(),
- nn. Linear(64*4*4,64),
- nn.Linear(64,10)
- )
-
- #定义前向传播
- def forward(self,x):
- x = self.model(x)
- return x
完整的模型训练套路train.py
- """
- 完整的模型训练的套路
- """
-
- #准备数据集
- import torch
- import torchvision
- from torch import nn
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
-
- from Model import Tudui
-
- train_data = torchvision.datasets.CIFAR10("./data",
- train=True,
- transform=torchvision.transforms.ToTensor(),
- download=True)
- test_data = torchvision.datasets.CIFAR10("./data",
- train=False,
- transform=torchvision.transforms.ToTensor(),
- download=True)
-
- #查看训练集和测试集有多少张
- #length 长度
- train_data_size = len(train_data) #训练集的长度
- test_data_size = len(test_data) #测试集的长度
- print(f"训练集的长度为{train_data_size}\n")
- print(f"测试集的长度为{test_data_size}\n")
-
- # 利用DataLoader 来加载数据集
- train_dataloader = DataLoader(train_data,batch_size=64)
- test_dataloader = DataLoader(test_data,batch_size=64)
-
- #主函数
- if __name__ == '__main__':
- # 创建网络模型
- tudui = Tudui()
-
- #小测试
- input = torch.ones((64,3,32,32))
- output = tudui(input)
- print(output.shape)
- """
- torch.Size([64, 10])
- 64是代表64张照片
- 10是代表10个类别,每张图片10各类别上分别的概率
- """
-
- # 损失函数
- loss_fn = nn.CrossEntropyLoss()
-
- #学习速率
- #1e-2=1x10^(-2)
- learning_rate = 1e-2
-
- # 优化器
- optimizer = torch.optim.SGD(tudui.parameters(),lr = learning_rate,)
-
- #设置训练网络的一些参数
- total_train_step = 0 #记录训练的次数
- total_test_step = 0 #记录测试的次数
- #训练的次数
- epoch = 10
- #添加tensorboard
- writer = SummaryWriter("logs_train")
-
- for i in range(epoch):
- print(f"------第{i+1}轮训练开始------")
-
- # 训练步骤开始
- tudui.train()
- for data in train_dataloader:
- imgs,targets = data
- outputs = tudui(imgs)
- loss = loss_fn(outputs,targets)
-
- #优化器的调优
- optimizer.zero_grad()# 梯度清零
- loss.backward()# 反向传播
- optimizer.step()# 更新优化参数
-
- total_train_step = total_train_step + 1 #训练次数加1
- if total_train_step % 100 == 0:# 每个一百次输出一次训练的结果
- print(f"训练次数:{total_train_step},Loss:{loss.item()}") #记录每次训练的损失结果,item()主要就是把loss转化为真实的数,其实转化不转化都行的
- writer.add_scalar("train_loss",loss.item(),total_train_step)
-
- #测试步骤开始
- tudui.eval()
- total_test_loss = 0
- total_accuracy = 0
- with torch.no_grad():#防止调优,测试时不需要进行调优
- for data in test_dataloader:
- imgs , targets = data
- outputs = tudui(imgs)
- loss = loss_fn(outputs,targets)
- total_test_loss = total_test_loss + loss
-
- #计算整体的正确率
- accuracy = (outputs.argmax(1) == targets).sum()
- total_accuracy = total_accuracy + accuracy
- print(f"整体测试集上的正确率{total_accuracy/test_data_size}")
- print(f"整体测试集上的Loss:{total_test_loss}")
- writer.add_scalar("test_loss",total_test_loss,total_test_step)
- writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
- total_test_step = total_test_step + 1
-
- #保存模型
- torch.save(tudui,f"tudui_{i}.ph")
- #torch.save(tudui.state_dict(),f"tudui_{i}.ph")
- print("模型已保存")
-
- writer.close()
- """
- 完整的模型训练的套路
- """
-
- #准备数据集
- import torch
- import torchvision
- from torch import nn
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- import time
-
- from Model import Tudui
-
- train_data = torchvision.datasets.CIFAR10("./data",
- train=True,
- transform=torchvision.transforms.ToTensor(),
- download=True)
- test_data = torchvision.datasets.CIFAR10("./data",
- train=False,
- transform=torchvision.transforms.ToTensor(),
- download=True)
-
- #查看训练集和测试集有多少张
- #length 长度
- train_data_size = len(train_data) #训练集的长度
- test_data_size = len(test_data) #测试集的长度
- print(f"训练集的长度为{train_data_size}\n")
- print(f"测试集的长度为{test_data_size}\n")
-
- # 利用DataLoader 来加载数据集
- train_dataloader = DataLoader(train_data,batch_size=64)
- test_dataloader = DataLoader(test_data,batch_size=64)
-
- #主函数
- if __name__ == '__main__':
- # 创建网络模型
- tudui = Tudui()
- if torch.cuda.is_available():
- tudui = tudui.cuda()
-
- #小测试
-
- input = torch.ones((64,3,32,32))
- device = torch.device('cuda:0') #将tensor.cpu类型的数据转化为tensor.gpu类型的数据
- input = input.to(device)
- output = tudui(input)
- print(output.shape)
- """
- torch.Size([64, 10])
- 64是代表64张照片
- 10是代表10个类别,每张图片10各类别上分别的概率
- """
-
- # 损失函数
- loss_fn = nn.CrossEntropyLoss()
- if torch.cuda.is_available():
- loss_fn = loss_fn.cuda()
-
- #学习速率
- #1e-2=1x10^(-2)
- learning_rate = 1e-2
-
- # 优化器
- optimizer = torch.optim.SGD(tudui.parameters(),lr = learning_rate,)
-
- #设置训练网络的一些参数
- total_train_step = 0 #记录训练的次数
- total_test_step = 0 #记录测试的次数
- #训练的次数
- epoch = 10
- #添加tensorboard
- writer = SummaryWriter("logs_train")
-
- start_time = time.time() #开始训练的时间
- for i in range(epoch):
- print(f"------第{i+1}轮训练开始------")
-
- # 训练步骤开始
- tudui.train()
- for data in train_dataloader:
- imgs,targets = data
- if torch.cuda.is_available():
- imgs = imgs.cuda()
- targets = targets.cuda()
- outputs = tudui(imgs)
- loss = loss_fn(outputs,targets)
-
- #优化器的调优
- optimizer.zero_grad()# 梯度清零
- loss.backward()# 反向传播
- optimizer.step()# 更新优化参数
-
- total_train_step = total_train_step + 1 #训练次数加1
- if total_train_step % 100 == 0:# 每个一百次输出一次训练的结果
- end_time = time.time() #结束时间
- print(end_time - start_time) #计算100次训练的间隔的时间
- print(f"训练次数:{total_train_step},Loss:{loss.item()}") #记录每次训练的损失结果,item()主要就是把loss转化为真实的数,其实转化不转化都行的
- writer.add_scalar("train_loss",loss.item(),total_train_step)
-
- #测试步骤开始
- tudui.eval()
- total_test_loss = 0
- total_accuracy = 0
- with torch.no_grad():#防止调优,测试时不需要进行调优
- for data in test_dataloader:
- imgs , targets = data
- if torch.cuda.is_available():
- imgs = imgs.cuda()
- targets = targets.cuda()
- outputs = tudui(imgs)
- loss = loss_fn(outputs,targets)
- total_test_loss = total_test_loss + loss
-
- #计算整体的正确率
- accuracy = (outputs.argmax(1) == targets).sum()
- total_accuracy = total_accuracy + accuracy
- print(f"整体测试集上的正确率{total_accuracy/test_data_size}")
- print(f"整体测试集上的Loss:{total_test_loss}")
- writer.add_scalar("test_loss",total_test_loss,total_test_step)
- writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
- total_test_step = total_test_step + 1
-
- #保存模型
- torch.save(tudui,f"tudui_{i}.ph")
- #torch.save(tudui.state_dict(),f"tudui_{i}.ph")
- print("模型已保存")
-
- writer.close()
- """
- 完整的模型训练的套路
- """
-
- #准备数据集
- import torch
- import torchvision
- from torch import nn
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- import time
-
- from Model import Tudui
-
- #定义训练的设备
- # device = torch.device("cuda:0")
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
- train_data = torchvision.datasets.CIFAR10("./data",
- train=True,
- transform=torchvision.transforms.ToTensor(),
- download=True)
- test_data = torchvision.datasets.CIFAR10("./data",
- train=False,
- transform=torchvision.transforms.ToTensor(),
- download=True)
-
- #查看训练集和测试集有多少张
- #length 长度
- train_data_size = len(train_data) #训练集的长度
- test_data_size = len(test_data) #测试集的长度
- print(f"训练集的长度为{train_data_size}\n")
- print(f"测试集的长度为{test_data_size}\n")
-
- # 利用DataLoader 来加载数据集
- train_dataloader = DataLoader(train_data,batch_size=64)
- test_dataloader = DataLoader(test_data,batch_size=64)
-
- #主函数
- if __name__ == '__main__':
- # 创建网络模型
- tudui = Tudui()
- tudui = tudui.to(device)
-
-
- #小测试
-
- input = torch.ones((64,3,32,32))
- input = input.to(device)
- output = tudui(input)
- print(output.shape)
- """
- torch.Size([64, 10])
- 64是代表64张照片
- 10是代表10个类别,每张图片10各类别上分别的概率
- """
-
- # 损失函数
- loss_fn = nn.CrossEntropyLoss()
- loss_fn = loss_fn.to(device)
-
- #学习速率
- #1e-2=1x10^(-2)
- learning_rate = 1e-2
-
- # 优化器
- optimizer = torch.optim.SGD(tudui.parameters(),lr = learning_rate,)
-
- #设置训练网络的一些参数
- total_train_step = 0 #记录训练的次数
- total_test_step = 0 #记录测试的次数
- #训练的次数
- epoch = 10
- #添加tensorboard
- writer = SummaryWriter("logs_train")
-
- start_time = time.time() #开始训练的时间
- for i in range(epoch):
- print(f"------第{i+1}轮训练开始------")
-
- # 训练步骤开始
- tudui.train()
- for data in train_dataloader:
- imgs,targets = data
- imgs = imgs.to(device)
- targets = targets.to(device)
- outputs = tudui(imgs)
- loss = loss_fn(outputs,targets)
-
- #优化器的调优
- optimizer.zero_grad()# 梯度清零
- loss.backward()# 反向传播
- optimizer.step()# 更新优化参数
-
- total_train_step = total_train_step + 1 #训练次数加1
- if total_train_step % 100 == 0:# 每个一百次输出一次训练的结果
- end_time = time.time() #结束时间
- print(end_time - start_time) #计算100次训练的间隔的时间
- print(f"训练次数:{total_train_step},Loss:{loss.item()}") #记录每次训练的损失结果,item()主要就是把loss转化为真实的数,其实转化不转化都行的
- writer.add_scalar("train_loss",loss.item(),total_train_step)
-
- #测试步骤开始
- tudui.eval()
- total_test_loss = 0
- total_accuracy = 0
- with torch.no_grad():#防止调优,测试时不需要进行调优
- for data in test_dataloader:
- imgs , targets = data
- imgs = imgs.to(device)
- targets = targets.to(device)
- outputs = tudui(imgs)
- loss = loss_fn(outputs,targets)
- total_test_loss = total_test_loss + loss
-
- #计算整体的正确率
- accuracy = (outputs.argmax(1) == targets).sum()
- total_accuracy = total_accuracy + accuracy
- print(f"整体测试集上的正确率{total_accuracy/test_data_size}")
- print(f"整体测试集上的Loss:{total_test_loss}")
- writer.add_scalar("test_loss",total_test_loss,total_test_step)
- writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
- total_test_step = total_test_step + 1
-
- #保存模型
- torch.save(tudui,f"tudui_{i}.ph")
- #torch.save(tudui.state_dict(),f"tudui_{i}.ph")
- print("模型已保存")
-
- writer.close()
如果没有GPU怎么办呢?
没有GPU的话,我们可以使用谷歌提供colab,可能访问这个网站的话需要进行科学上网
利用已经训练好的模型,然后给它提供测试
- # -*- coding: utf-8 -*-
- # 作者:小土堆
- # 公众号:土堆碎念
- import torch
- import torchvision
- from PIL import Image
- from torch import nn
-
- image_path = "../imgs/airplane.png"
- image = Image.open(image_path)
- print(image)
- image = image.convert('RGB')
- transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
- torchvision.transforms.ToTensor()])
-
- image = transform(image)
- print(image.shape)
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
- self.model = nn.Sequential(
- nn.Conv2d(3, 32, 5, 1, 2),
- nn.MaxPool2d(2),
- nn.Conv2d(32, 32, 5, 1, 2),
- nn.MaxPool2d(2),
- nn.Conv2d(32, 64, 5, 1, 2),
- nn.MaxPool2d(2),
- nn.Flatten(),
- nn.Linear(64*4*4, 64),
- nn.Linear(64, 10)
- )
-
- def forward(self, x):
- x = self.model(x)
- return x
-
- model = torch.load("tudui_29_gpu.pth", map_location=torch.device('cpu'))
- print(model)
- image = torch.reshape(image, (1, 3, 32, 32))
- model.eval()
- with torch.no_grad():
- output = model(image)
- print(output)
-
- print(output.argmax(1))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。