赞
踩
OpenAI CLIP(Contrastive Language–Image Pretraining)是一种由OpenAI开发的多模态学习模型。它能够同时理解图像和文本,并在两者之间建立联系,实现了图像和文本之间的跨模态理解。
CLIP模型的工作原理是将来自图像和文本的数据嵌入到一个共同的语义空间中。在这个语义空间中,相关的图像和文本会靠近彼此,而不相关的则会远离彼此。CLIP模型通过对比学习的方式,在这个共同的语义空间中对图像和文本进行编码,从而实现跨模态理解。
# image_encoder - ResNet or Vision Transformer # text_encoder - CBOW or Text Transformer # I[n, h, w, c] - minibatch of aligned images # T[n, l] - minibatch of aligned texts # W_i[d_i, d_e] - learned proj of image to embed # W_t[d_t, d_e] - learned proj of text to embed # t - learned temperature parameter # extract feature representations of each modality I_f = image_encoder(I) #[n, d_i] T_f = text_encoder(T) #[n, d_t] # joint multimodal embedding [n, d_e] I_e = l2_normalize(np.dot(I_f, W_i), axis=1) T_e = l2_normalize(np.dot(T_f, W_t), axis=1) # scaled pairwise cosine similarities [n, n] logits = np.dot(I_e, T_e.T) * np.exp(t) # symmetric loss function labels = np.arange(n) loss_i = cross_entropy_loss(logits, labels, axis=0) loss_t = cross_entropy_loss(logits, labels, axis=1) loss = (loss_i + loss_t)/2
CLIP模型由一个图像编码器和一个文本编码器组成,它们共享参数。图像编码器负责将图像嵌入到语义空间中,而文本编码器则负责将文本嵌入到同样的语义空间中。CLIP模型使用了Transformer架构来实现这两个编码器,这种架构能够处理长距离的依赖关系,并且在大规模数据上进行预训练。
CLIP模型在多个任务上都表现出色,包括但不限于:
下面是一个使用CLIP模型进行图像分类的Python代码示例:
import os import clip import torch from torchvision.datasets import CIFAR100 # Load the model device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load('ViT-B/32', device) # Download the dataset cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False) # Prepare the inputs image, class_id = cifar100[3637] image_input = preprocess(image).unsqueeze(0).to(device) text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device) # Calculate features with torch.no_grad(): image_features = model.encode_image(image_input) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(5) # Print the result print("\nTop predictions:\n") for value, index in zip(values, indices): print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")
下面是一个使用CLIP模型进行文本-图像相似度检索的Python代码示例:
import torch import clip from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
CLIP 模型通过对比学习实现了图像和文本之间的跨模态理解,为多种任务提供了强大的支持。
源代码:https://github.com/openai/CLIP?tab=readme-ov-file
论文地址:https://arxiv.org/abs/2103.00020
个人水平有限,有问题随时交流~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。