赞
踩
更多创客作品,请关注笔者网站园丁鸟,搜集全球极具创意,且有价值的创客作品
让机器人动起来容易,但要精确控制是比较难的,这与控制算法、硬件都有比较大的相关性。对于轮式机器人,base controller代码写好,机器人动起来后,首先做的就是需要对线速度,和角速度进行标定,以保证机器人可以按照指令精确的的形式,这篇博文中将讲述线速度的标定方法,下一篇中介绍角速度的标定方法。
线速度的标定,就是设置一个1m的距离,代码控制让机器人行驶1m,看是否刚好是1m,误差在可接受的范围内即可,如下是进行标定的代码:
#!/usr/bin/env python import rospy from geometry_msgs.msg import Twist, Point from math import copysign, sqrt, pow import tf class CalibrateLinear(): def __init__(self): # Give the node a name rospy.init_node('calibrate_linear', anonymous=False) # Set rospy to execute a shutdown function when terminating the script rospy.on_shutdown(self.shutdown) # How fast will we check the odometry values? self.rate = 10 r = rospy.Rate(self.rate) # Set the distance to travel self.test_distance = 1.0 # meters self.speed = 1.0 # meters per second self.tolerance = 0.01 # meters self.odom_linear_scale_correction = 1.0 self.start_test = True # Publisher to control the robot's speed self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5) # The base frame is base_footprint for the TurtleBot but base_link for Pi Robot self.base_frame = rospy.get_param('~base_frame', '/base_link') # The odom frame is usually just /odom self.odom_frame = rospy.get_param('~odom_frame', '/odom') # Initialize the tf listener self.tf_listener = tf.TransformListener() # Give tf some time to fill its buffer rospy.sleep(2) # Make sure we see the odom and base frames self.tf_listener.waitForTransform(self.odom_frame, self.base_frame, rospy.Time(), rospy.Duration(60.0)) rospy.loginfo("Bring up rqt_reconfigure to control the test.") self.position = Point() # Get the starting position from the tf transform between the odom and base frames self.position = self.get_position() x_start = self.position.x y_start = self.position.y move_cmd = Twist() while not rospy.is_shutdown(): # Stop the robot by default move_cmd = Twist() if self.start_test: # Get the current position from the tf transform between the odom and base frames self.position = self.get_position() # Compute the Euclidean distance from the target point distance = sqrt(pow((self.position.x - x_start), 2) + pow((self.position.y - y_start), 2)) # Correct the estimated distance by the correction factor distance *= self.odom_linear_scale_correction # How close are we? error = distance - self.test_distance # Are we close enough? if not self.start_test or abs(error) < self.tolerance: self.start_test = False params = False rospy.loginfo(params) else: # If not, move in the appropriate direction move_cmd.linear.x = copysign(self.speed, -1 * error) else: self.position = self.get_position() x_start = self.position.x y_start = self.position.y self.cmd_vel.publish(move_cmd) r.sleep() # Stop the robot self.cmd_vel.publish(Twist()) def get_position(self): # Get the current transform between the odom and base frames try: (trans, rot) = self.tf_listener.lookupTransform(self.odom_frame, self.base_frame, rospy.Time(0)) except (tf.Exception, tf.ConnectivityException, tf.LookupException): rospy.loginfo("TF Exception") return return Point(*trans) def shutdown(self): # Always stop the robot when shutting down the node rospy.loginfo("Stopping the robot...") self.cmd_vel.publish(Twist()) rospy.sleep(1) if __name__ == '__main__': try: CalibrateLinear() rospy.spin() except: rospy.loginfo("Calibration terminated.")
ROS标准的代码,我们这里不多解释,请自行到Ros wiki学习,这里只解释一下标定有关逻辑的代码,标定的逻辑主要在while循环里面,请看下面的代码解释:
x_start = self.position.x #设定起始位置的x坐标 y_start = self.position.y #设定起始位置的y坐标 move_cmd = Twist() while not rospy.is_shutdown(): # Stop the robot by default move_cmd = Twist() if self.start_test: # Get the current position from the tf transform between the odom and base frames self.position = self.get_position() #获取当前的位置信息 # 计算当前位置与起始位置的距离 distance = sqrt(pow((self.position.x - x_start), 2) + pow((self.position.y - y_start), 2)) # Correct the estimated distance by the correction factor distance *= self.odom_linear_scale_correction # 计算与目标位置的距离 error = distance - self.test_distance # Are we close enough? if not self.start_test or abs(error) < self.tolerance: #如果已经到达目标位置,则停止 self.start_test = False params = False rospy.loginfo(params) else: # 如果还没有到达,则继续前进,如果已经超出了目标位置,这控制电机反转,退回 move_cmd.linear.x = copysign(self.speed, -1 * error) else: self.position = self.get_position() x_start = self.position.x y_start = self.position.y self.cmd_vel.publish(move_cmd)#发布控制Twist消息 r.sleep()
接下来运行如下命令,控制小车前进
rosrun diego_nav calibrate_linear.py
如果能一次运行刚好是1m那当然是理想的效果,如果不理想,可能要调整my_arduino_params.yaml文件中有关机器人的参数了,首先需要检查机器人的参数是否与实际的想否,如果不想否修改为与实际想否的数据,另外要注意的是ROS里面使用的单位是 米,一定要注意单位的换算;
# === Robot drivetrain parameters
wheel_diameter: 0.02900
wheel_track: 0.18
encoder_resolution: 2 # from Pololu for 131:1 motors
gear_reduction: 75.0
motors_reversed: True
即使是数据与实际的测量数据符合,但也可能达不到你的要求,这可能与电机的性能有关系,本人的经验适当的调整wheel_diameter参数,即可以达到满意的效果,当然要达到高精度的控制效果,硬件的精度也要非常高。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。