赞
踩
目录
2、Python-statannotations库添加显著性标注
3、Python-statannotations库绘制显著性标注并自己设置标识
如何使用Python-SeabornSeaborn进行显著性统计图表绘制,详细内容如下:
- import matplotlib.pylab as plt
- import numpy as np
- import seaborn as sns
- import scipy
-
- # ---------------------自定义P值和星号对应关系----------------------
- def convert_pvalue_to_asterisks(pvalue):
- if pvalue <= 0.0001:
- return "****"
- elif pvalue <= 0.001:
- return "***"
- elif pvalue <= 0.01:
- return "**"
- elif pvalue <= 0.05:
- return "*"
- return "ns"
-
- # ---------------------scipy.stats 计算显著性指标----------------
- iris = sns.load_dataset("iris")
- data_p = iris[["sepal_length","species"]]
- stat,p_value = scipy.stats.ttest_ind(data_p[data_p["species"]=="setosa"]["sepal_length"],
- data_p[data_p["species"]=="versicolor"]["sepal_length"],
- equal_var=False)
-
- # ------------------------可视化绘制---------------------------
- plt.rcParams['font.family'] = ['Times New Roman']
- plt.rcParams["axes.labelsize"] = 18
- palette=['#0073C2FF','#EFC000FF','#868686FF']
-
- fig,ax = plt.subplots(figsize=(5,4),dpi=100,facecolor="w")
- ax = sns.barplot(x="species",y="sepal_length",data=iris,palette=palette,
- estimator=np.mean,ci="sd", capsize=.1,errwidth=1,errcolor="k",
- ax=ax,
- **{"edgecolor":"k","linewidth":1})
- # 添加P值
- x1, x2 = 0, 1
- y,h = data_p["sepal_length"].mean()+1,.2
- #绘制横线位置
- ax.plot([x1, x1, x2, x2], [y, y+h, y+h, y], lw=1, c="k")
- #添加P值
- ax.text((x1+x2)*.5, y+h, "T-test: {} ".format(p_value), ha='center', va='bottom', color="k")
-
- ax.tick_params(which='major',direction='in',length=3,width=1.,labelsize=14,bottom=False)
- for spine in ["top","left","right"]:
- ax.spines[spine].set_visible(False)
- ax.spines['bottom'].set_linewidth(2)
- ax.grid(axis='y',ls='--',c='gray')
- ax.set_axisbelow(True)
- plt.show()
Python-statannotations库则是针对Seaborn绘图对象进行显著性标注的专用库,其可以提供柱形图、箱线图、小提琴图等统计图表的显著性标注绘制,计算P值方法基于scipy.stats方法,这里我们简单列举几个示例演示即可,更多详细内容可参看:项目地址、使用教程 or 使用教程。
样例一:
- import seaborn as sns
- import matplotlib.pylab as plt
- from statannotations.Annotator import Annotator
-
- df = sns.load_dataset("tips")
-
- x = "day"
- y = "total_bill"
- order = ['Sun', 'Thur', 'Fri', 'Sat']
- fig,ax = plt.subplots(figsize=(5,4),dpi=100,facecolor="w")
- ax = sns.boxplot(data=df, x=x, y=y, order=order,ax=ax)
-
- pairs=[("Thur", "Fri"), ("Thur", "Sat"), ("Fri", "Sun")]
- annotator = Annotator(ax, pairs, data=df, x=x, y=y, order=order)
- annotator.configure(test='Mann-Whitney', text_format='star',line_height=0.03,line_width=1)
- annotator.apply_and_annotate()
-
- ax.tick_params(which='major',direction='in',length=3,width=1.,labelsize=14,bottom=False)
- for spine in ["top","left","right"]:
- ax.spines[spine].set_visible(False)
- ax.spines['bottom'].set_linewidth(2)
- ax.grid(axis='y',ls='--',c='gray')
- ax.set_axisbelow(True)
- plt.show()
样例二:
- import seaborn as sns
- import matplotlib.pyplot as plt
- plt.rcParams['font.family'] = ['Times New Roman']
- plt.rcParams["axes.labelsize"] = 18
- #palette=['#0073C2FF','#EFC000FF']
- palette=['#E59F01','#56B4E8']
- #palette = ["white","black"]
-
-
- fig,ax = plt.subplots(figsize=(5,4),dpi=100,facecolor="w")
- ax = sns.barplot(x="order",y="value",hue="class",data=group_data_p,palette=palette,ci="sd",
- capsize=.1,errwidth=1,errcolor="k",ax=ax,
- **{"edgecolor":"k","linewidth":1})
-
- # 添加P值
- box_pairs = [(("one","type01"),("two","type01")),
- (("one","type02"),("two","type02")),
- (("one","type01"),("three","type01")),
- (("one","type02"),("three","type02")),
- (("two","type01"),("three","type01")),
- (("two","type02"),("three","type02"))]
-
-
- annotator = Annotator(ax, data=group_data_p, x="order",y="value",hue="class",
- pairs=box_pairs)
- annotator.configure(test='t-test_ind', text_format='star',line_height=0.03,line_width=1)
- annotator.apply_and_annotate()
样例三:如果针对组间数据进行统计分析,可以设置pairs参数据如下:
- box_pairs = [(("one","type01"),("one","type02")),
- (("two","type01"),("two","type02")),
- (("three","type01"),("three","type02"))]
案例四:自定义显著性
- import seaborn as sns
- import matplotlib.pylab as plt
- from statannotations.Annotator import Annotator
-
- df = sns.load_dataset("tips")
-
- x = "day"
- y = "total_bill"
- order = ['Sun', 'Thur', 'Fri', 'Sat']
- pairs = [("Sun", "Thur"), ("Sun", "Sat"), ("Fri", "Sun")]
- ax = sns.boxplot(data=df, x=x, y=y, order=order)
- annot = Annotator(ax, [("Thur", "Fri"), ("Thur", "Sat"), ("Fri", "Sun")], data=df, x=x, y=y, order=order)
- annot.new_plot(ax, pairs=pairs, data=df, x=x, y=y, order=order)
- annot.configure(test=None, loc='inside')
- annot.set_pvalues([0.1, 0.1, 0.001])
- annot.annotate()
- plt.show()
在安装的statannotations库文件夹下找到 PValueFormat.py文件并打开
找到下面这个函数,你可以通过修改这个函数添加自己想要的标识效果
例如以 tips 为例,数据结构如下:
例一:如果设置单个柱状图,只需要修改x,y即可。
- import seaborn as sns
- import matplotlib.pylab as plt
-
- df = sns.load_dataset("tips")
-
- order = ['Sun', 'Thur', 'Fri', 'Sat']
- fig, ax = plt.subplots(figsize=(5, 4), dpi=100, facecolor="w")
- ax = sns.barplot(data=df, x="day", y="total_bill", order=order, ax=ax,capsize=0.2)
- plt.show()
例二:如果要绘制分组的柱状图,则还需要设置hue
- import seaborn as sns
- import matplotlib.pylab as plt
-
- df = sns.load_dataset("tips")
-
- order = ['Sun', 'Thur', 'Fri', 'Sat']
- fig, ax = plt.subplots(figsize=(5, 4), dpi=100, facecolor="w")
- ax = sns.barplot(data=df, x="day", y="total_bill", order=order, ax=ax,capsize=0.2,hue="sex")
- plt.show()
- seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=mean , ci=95,
- n_boot=1000, units=None, seed=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26',
- errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)
- import pandas as pd
- import seaborn as sns
- import matplotlib.pyplot as plt
- import numpy as np
- from scipy.stats import pearsonr
- import matplotlib as mpl
-
- def cm2inch(x,y):
- return x/2.54,y/2.54
-
- size1 = 10.5
- mpl.rcParams.update(
- {
- 'text.usetex': False,
- 'font.family': 'stixgeneral',
- 'mathtext.fontset': 'stix',
- "font.family":'serif',
- "font.size": size1,
- "font.serif": ['Times New Roman'],
- }
- )
- fontdict = {'weight': 'bold','size':size1,'family':'SimHei'}
-
- df_coor=np.random.random((10,10)) # 相关性结果
- fig = plt.figure(figsize=(cm2inch(16,12)))
- ax1 = plt.gca()
-
- #构造mask,去除重复数据显示
- mask = np.zeros_like(df_coor)
- mask[np.triu_indices_from(mask)] = True
- mask2 = mask
- mask = (np.flipud(mask)-1)*(-1)
- mask = np.rot90(mask,k = -1)
-
- im1 = sns.heatmap(df_coor,annot=True,cmap="RdBu"
- , mask=mask#构造mask,去除重复数据显示
- ,vmax=1,vmin=-1
- , fmt='.2f',ax = ax1)
-
- ax1.tick_params(axis = 'both', length=0)
-
- #计算相关性显著性并显示
- rlist = []
- plist = []
- for i in range(df_coor.shape[0]):
- for j in range(df_coor.shape[0]):
- r,p = pearsonr(df_coor[i],df_coor[j])
- rlist.append(r)
- plist.append(p)
-
- rarr = np.asarray(rlist).reshape(df_coor.shape[0],df_coor.shape[0])
- parr = np.asarray(plist).reshape(df_coor.shape[0],df_coor.shape[0])
- xlist = ax1.get_xticks()
- ylist = ax1.get_yticks()
-
- widthx = 0
- widthy = -0.15
-
- for m in ax1.get_xticks():
- for n in ax1.get_yticks():
- pv = (parr[int(m),int(n)])
- rv = (rarr[int(m),int(n)])
- if mask2[int(m),int(n)]<1.:
- if abs(rv) > 0.5:
- if pv< 0.05 and pv>= 0.01:
- ax1.text(n+widthx,m+widthy,'*',ha = 'center',color = 'white')
- if pv< 0.01 and pv>= 0.001:
- ax1.text(n+widthx,m+widthy,'**',ha = 'center',color = 'white')
- if pv< 0.001:
- print([int(m),int(n)])
- ax1.text(n+widthx,m+widthy,'***',ha = 'center',color = 'white')
- else:
- if pv< 0.05 and pv>= 0.01:
- ax1.text(n+widthx,m+widthy,'*',ha = 'center',color = 'k')
- elif pv< 0.01 and pv>= 0.001:
- ax1.text(n+widthx,m+widthy,'**',ha = 'center',color = 'k')
- elif pv< 0.001:
- ax1.text(n+widthx,m+widthy,'***',ha = 'center',color = 'k')
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。