赞
踩
sudo apt-get install graphviz
sudo pip install torchviz
import torch from torch import nn from torchviz import make_dot, make_dot_from_trace # Visualize gradients of simple MLP # The method below is for building directed graphs of PyTorch operations, built during forward propagation and showing which operations will be called on backward. It omits subgraphs which do not require gradients. model=nn.Sequential() model.add_module("W0", nn.Linear(8, 16)) model.add_module("tanh", nn.Tanh()) model.add_module("W1", nn.Linear(16, 1)) x = Variable(torch.randn(1, 8)) y = model(x) make_dot(y.mean(), params=dict(model.named_parameters())) # 直接在ipython notebook中显示 dot=make_dot(y.mean(), params=dict(model.named_parameters())) dot.render("model.pdf") #保存为pdf
安装pytorch = 1.2
, tensorwatch = 0.8.7
import tensorwatch as tw
import torchvision.models
alexnet_model = torchvision.models.alexnet()
tw.draw_model(alexnet_model, [1, 3, 224, 224]).save("alextnet.png")
教程: tensorwatch
pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install hiddenlayer
import torch import torchvision.models import hiddenlayer as hl # Resnet101 model = torchvision.models.resnet101() # Rather than using the default transforms, build custom ones to group # nodes of residual and bottleneck blocks. transforms = [ # Fold Conv, BN, RELU layers into one hl.transforms.Fold("Conv > BatchNorm > Relu", "ConvBnRelu"), # Fold Conv, BN layers together hl.transforms.Fold("Conv > BatchNorm", "ConvBn"), # Fold bottleneck blocks hl.transforms.Fold(""" ((ConvBnRelu > ConvBnRelu > ConvBn) | ConvBn) > Add > Relu """, "BottleneckBlock", "Bottleneck Block"), # Fold residual blocks hl.transforms.Fold("""ConvBnRelu > ConvBnRelu > ConvBn > Add > Relu""", "ResBlock", "Residual Block"), # Fold repeated blocks hl.transforms.FoldDuplicates(), ] # Display graph using the transforms above dot = hl.build_graph(model, torch.zeros([1, 3, 224, 224]), transforms=transforms) dot.attr("graph", rankdir="TD") dot.render("resnet101") # save as resnet101.pdf
教程: hiddenlayer
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。