赞
踩
上一篇文章中我们写完了最难的两个数学原理部分,mask和相对位置编码的代码。本篇文章将讲解Swin的全部代码。文章仅供学习,若有纰漏请不吝赐教。全部代码放在文章最后。
我看这些代码的经验是跟着维度一点一点的串,当然只是个人经验。可以跟我下面的维度图走
- class SwinTransformer(nn.Module):
- def __init__(self, patch_size=4, in_chans=3, num_classes=1000,
- embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
- window_size=7, mlp_ratio=4., qkv_bias=True,
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
- norm_layer=nn.LayerNorm, patch_norm=True,
- use_checkpoint=False, **kwargs):
参数中值得注意的是depths和num_heads,len(depths)作为Swin中的stage数,而depths中的每一个值代表每一个stage中有多少个Swin Transformer Block。需要注意的是一个block中只会有一个MSA,就是说W-MSA和SW-MSA必然存在于不同的Block。num_heads指的是在每一个stage中的所有Block中的MSA使用的头数,由默认值我们可以看到第一个stage中的MSA的头数是3个。checkpoint如果使用可以节省空间。
- self.num_classes = num_classes
- self.num_layers = len(depths) # stage数
- self.embed_dim = embed_dim
- self.patch_norm = patch_norm
- # stage4输出特征矩阵的channels
- self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
- self.mlp_ratio = mlp_ratio
- # 对应Patch partition和Linear Embedding
- self.patch_embed = PatchEmbed(
- patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
- norm_layer=norm_layer if self.patch_norm else None)
- self.pos_drop = nn.Dropout(p=drop_rate)
-
- # stochastic depth
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
初始化中是一些简单的赋值,因为每层的patchmerging会将通道变为两倍,所以
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
drp是指drop_path_rate 在每一个Swin Transformer Block之中都不一样,它是一个递增序列
- self.layers = nn.ModuleList()
- for i_layer in range(self.num_layers):
- # downsample是Patch merging,并且在最后一个stage为None
- layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
- depth=depths[i_layer],
- num_heads=num_heads[i_layer],
- window_size=window_size,
- mlp_ratio=self.mlp_ratio,
- qkv_bias=qkv_bias,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
- use_checkpoint=use_checkpoint)
- self.layers.append(layers)
- self.norm = norm_layer(self.num_features)
- self.avgpool = nn.AdaptiveAvgPool1d(1) # 在这个分类任务中,用全局平均池化取代cls token
- self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
-
- self.apply(self._init_weights)
然后搭建我们的stage。代码与论文的区别在于每个stage包含的是Block和紧随其后的Patch Merging,因此在最后一个stage中就没有Patch merging
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None
并且拿走这一层所有block的dpr
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])]
然后还有正则化和全局平均池化,用来顶替Vit中的cls token,最后一个linear用来分类。
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- nn.init.trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- def forward(self, x):
- # x: [B, L, C]
- x, H, W = self.patch_embed(x) # [B, HW, C]
- x = self.pos_drop(x)
-
- # 依次通过每个stage
- for layer in self.layers:
- x, H, W = layer(x, H, W)
-
- x = self.norm(x) # [B, L, C]
- x = self.avgpool(x.transpose(1, 2)) # [B, C, 1]
- x = torch.flatten(x, 1)
- x = self.head(x)
- return x
layer的输入是[B, HW, C]
- class PatchEmbed(nn.Module):
- def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
- super().__init__()
- patch_size = (patch_size, patch_size)
- self.patch_size = patch_size
- self.in_chans = in_c
- self.embed_dim = embed_dim
- self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
紧接着,我们来顺藤摸瓜摸一摸PatchEmbed函数,与Vit一样,通过一个卷积实现Embedding。
- def forward(self, x):
- _, _, H, W = x.shape
- # padding
- # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
- pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
- if pad_input:
- # (W_left, W_right, H_top,H_bottom, C_front, C_back)
- # pad是从后往前,从左往右,从上往下,原顺序是(B,C,H,W) pad顺序就是(W,H,C)
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],
- 0, self.patch_size[0] - H % self.patch_size[0],
- 0, 0))
- # 下采样patch_size倍
- x = self.proj(x)
- _, _, H, W = x.shape
- # flatten: [B, C, H, W] -> [B, C, HW]
- # transpose: [B, C, HW] -> [B, HW, C]
- x = x.flatten(2).transpose(1, 2)
- x = self.norm(x)
- return x, H, W # 这里是经过padding的H和W
这里需要注意的就是为了解决多尺度问题,需要使用padding。整体来说没有难点,我在注释已经写的很清楚了。返回的x的维度是[B, HW, C]。
- class BasicLayer(nn.Module):
- def __init__(self, dim, depth, num_heads, window_size,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
- super().__init__()
- self.dim = dim
- self.depth = depth
- self.window_size = window_size
- self.use_checkpoint = use_checkpoint
- self.shift_size = window_size // 2 # 移动尺寸
下来到重点了,depth是这个stage中的block数,downsample就是patchmerging的意思,刚刚我解释过如果最后一层就不会有patchmerging。这里的shift_size在后面很关键,我们判断一个MSA是W-MSA还是SW-MSA全靠shift_size存不存在判断。
- self.blocks = nn.ModuleList([
- SwinTransformerBlock(
- dim=dim,
- num_heads=num_heads,
- window_size=window_size,
- shift_size=0 if (i % 2 == 0) else self.shift_size,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- drop=drop,
- attn_drop=attn_drop,
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
- norm_layer=norm_layer)
- for i in range(depth)])
-
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(dim=dim, norm_layer=norm_layer)
- else:
- self.downsample = None
然后搭建depth个block,因为W-MSA和SW-MSA肯定是成对出现,所以用i%2来判断,downsample我们也刚刚提过。
- def create_mask(self, x, H, W):
- # calculate attention mask for SW-MSA
- # 保证Hp和Wp是window_size的整数倍
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
- # 拥有和feature map一样的通道排列顺序,方便后续window_partition
- img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1]
- # 将窗口切分,然后进行标号
- h_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- w_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- img_mask[:, h, w, :] = cnt
- cnt += 1
-
- mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] 划为窗口
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw] 窗口展平
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
- # [nW, Mh*Mw, Mh*Mw]
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- return attn_mask
在我的上一篇文章中花了大量精力详细讲解了create_mask和相对位置编码两个函数,这里就不细说了。x返回时的维度不变,仍然是[B, HW, C]。
- def forward(self, x, H, W):
- # 先创建一个mask蒙版,在图像尺寸不变的情况下蒙版也不改变
- attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw]
- for blk in self.blocks:
- blk.H, blk.W = H, W
- # 默认不适用checkpoint方法
- if not torch.jit.is_scripting() and self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x, attn_mask)
- else:
- x = blk(x, attn_mask)
- if self.downsample is not None:
- x = self.downsample(x, H, W)
- H, W = (H + 1) // 2, (W + 1) // 2
-
- return x, H, W
在一个stage中特征图的尺寸肯定是不会改变的,shift_size也不会改变,所以生成的蒙版可以一直使用。这里不用管checkpoint,值得注意的是最后的
H, W = (H + 1) // 2, (W + 1) // 2
因为下采样每次都会将特征图高和宽缩小二倍,所以如果特征图高和宽是奇数的话,我们会在下采样时使用padding将特征图补成偶数。如果是偶数,加一除二取整后与直接取整除二值一样,如果是奇数,直接除二取整就会比padding后的尺寸小。
最后需要注意的就是
else: x = blk(x, attn_mask)
attn_mask是直接传进SwinTransformerBlock的forward函数
- class SwinTransformerBlock(nn.Module):
- # 与Vit的block结构是相同的
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
-
- self.norm1 = norm_layer(dim)
- self.attn = WindowAttention(
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
- attn_drop=attn_drop, proj_drop=drop)
-
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
它的初始化函数没什么值得说的,稍后会说WindowAttention和MLP
- def forward(self, x, attn_mask):
- # x(B,L,C),因此需要记录h和w
- H, W = self.H, self.W
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- # 残差网络
- shortcut = x
- x = self.norm1(x)
- x = x.view(B, H, W, C)
-
- # pad feature maps to multiples of window size
- # 把feature map给pad到window size的整数倍
- pad_l = pad_t = 0
- pad_r = (self.window_size - W % self.window_size) % self.window_size
- pad_b = (self.window_size - H % self.window_size) % self.window_size
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
- _, Hp, Wp, _ = x.shape
-
- # cyclic shift
- if self.shift_size > 0:
- # 对窗口进行移位。从上向下移,从左往右移,因此是负的
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
- else:
- shifted_x = x
- attn_mask = None
-
- # partition windows
- x_windows = window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C]
进入SwinTransformerBlock前,x上一个经历的是create_mask,维度是[B, HW, C],所以需要单独传入H和W。shortcut是为了实现残差,之后将x的维度变为(B, H, W, C)。并且还要保证特征图是window_size的整数倍,所以要进行一次padding,此时维度是(B, Hp, Wp, C)。再进行mask中的移位,如果shift_size是0就说明是W-MSA,不需要移位。然后划分窗口并维度变换
- # W-MSA/SW-MSA
- attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C]
-
- # 窗口还原
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C]
- shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C]
-
- # shift还原,如果没有shifted就不用还原
- if self.shift_size > 0:
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
- else:
- x = shifted_x
-
- if pad_r > 0 or pad_b > 0:
- # 把前面pad的数据移除掉
- x = x[:, :H, :W, :].contiguous()
-
- x = x.view(B, H * W, C)
-
- # FFN
- x = shortcut + self.drop_path(x)
- x = x + self.drop_path(self.mlp(self.norm2(x)))
-
- return x
attn_mask在这里传给WindowAttention,之后先取消窗口划分,再将刚才的shift操作还原,再移除刚刚的padding
- def window_partition(x, window_size: int):
- """
- 将feature map按照window_size划分成一个个没有重叠的window
- Args:
- x: (B, H, W, C)
- window_size (int): window size(M)
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
- # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
-
-
- def window_reverse(windows, window_size: int, H: int, W: int):
- """
- 将一个个window还原成一个feature map
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size(M)
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
- # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
- # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
窗口划分和窗口还原,简单的维度变换
- class WindowAttention(nn.Module):
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):
- super().__init__()
- self.dim = dim
- self.window_size = window_size # [Mh, Mw]
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = head_dim ** -0.5
-
- # 每一个head都有自己的relative_position_bias_table
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH]
-
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- # meshgrid生成网格,再通过stack方法拼接
- coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw]
- coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw]
- # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
- relative_coords = relative_coords = coords_flatten.unsqueeze(2) - coords_flatten.unsqueeze(1) # [2, Mh*Mw, Mh*Mw]
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2]
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw]
- # 整个训练当中,window_size大小不变,因此这个索引也不会改变
- self.register_buffer("relative_position_index", relative_position_index)
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim) # 多头融合
- self.proj_drop = nn.Dropout(proj_drop)
-
- nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
- self.softmax = nn.Softmax(dim=-1)
这里head_dim就是dk,并且在MSA中每个头都要有自己的相对位置表,然后生成相对位置索引表 ,具体原理也在我上一篇中有非常详细说明。然后之后都与Vit相同。
- def forward(self, x, mask: Optional[torch.Tensor] = None):
- """
- Args:
- x: input features with shape of (num_windows*B, Mh*Mw, C)
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
- """
- # [batch_size*num_windows, Mh*Mw, total_embed_dim]
- B_, N, C = x.shape
- # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
- # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
- # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- # 通过unbind分别获得qkv
- q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
-
- # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
- # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
-
- # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw]
- # 通过unsqueeze加上一个batch维度
- attn = attn + relative_position_bias.unsqueeze(0)
-
- if mask is not None:
- # mask: [nW, Mh*Mw, Mh*Mw]
- nW = mask.shape[0] # num_windows
- # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
- # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
-
- attn = self.attn_drop(attn)
-
- # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
- # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
在这里进行相对位置编码 attn = attn + relative_position_bias.unsqueeze(0)
- class PatchMerging(nn.Module):
- def __init__(self, dim, norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.norm = norm_layer(4 * dim)
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) # 将通道数由4倍变为2倍
-
- def forward(self, x, H, W):
- """
- x: B, H*W(L), C,并不知道H和W,所以需要单独传参
- """
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
-
- x = x.view(B, H, W, C)
-
- # padding
- # 因为是下采样两倍,如果输入feature map的H,W不是2的整数倍,需要进行padding
- pad_input = (H % 2 == 1) or (W % 2 == 1)
- if pad_input:
- # 此时(B,H,W,C)依然是从后向前
- # (C_front, C_back, W_left, W_right, H_top, H_bottom)
- # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
- x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
-
- x0 = x[:, 0::2, 0::2, :] # [B, H/2, W/2, C]
- x1 = x[:, 1::2, 0::2, :] # [B, H/2, W/2, C]
- x2 = x[:, 0::2, 1::2, :] # [B, H/2, W/2, C]
- x3 = x[:, 1::2, 1::2, :] # [B, H/2, W/2, C]
- x = torch.cat([x0, x1, x2, x3], -1) # [B, H/2, W/2, 4*C],这里的-1就是在C的维度上拼接
- x = x.view(B, -1, 4 * C) # [B, H/2*W/2, 4*C]
- x = self.norm(x)
- x = self.reduction(x) # [B, H/2*W/2, 2*C]
- return x
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- import numpy as np
- from typing import Optional
-
-
- def drop_path_f(x, drop_prob: float = 0., training: bool = False):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
- the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
- changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
- 'survival rate' as the argument.
- """
- if drop_prob == 0. or not training:
- return x
- keep_prob = 1 - drop_prob
- shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
- random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
- random_tensor.floor() # binarize
- output = x.div(keep_prob) * random_tensor
- return output
-
-
- class DropPath(nn.Module):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- """
- def __init__(self, drop_prob=None):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
-
- def forward(self, x):
- return drop_path_f(x, self.drop_prob, self.training)
-
-
- def window_partition(x, window_size: int):
- """
- 将feature map按照window_size划分成一个个没有重叠的window
- Args:
- x: (B, H, W, C)
- window_size (int): window size(M)
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
- # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
-
-
- def window_reverse(windows, window_size: int, H: int, W: int):
- """
- 将一个个window还原成一个feature map
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size(M)
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
- # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
- # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
-
-
- class PatchEmbed(nn.Module):
- """
- 2D Image to Patch Embedding
- """
- def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
- super().__init__()
- patch_size = (patch_size, patch_size)
- self.patch_size = patch_size
- self.in_chans = in_c
- self.embed_dim = embed_dim
- self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
-
- def forward(self, x):
- _, _, H, W = x.shape
-
- # padding
- # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
- pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
- if pad_input:
- # (W_left, W_right, H_top,H_bottom, C_front, C_back)
- # pad是从后往前,从左往右,从上往下,原顺序是(B,C,H,W) pad顺序就是(W,H,C)
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],
- 0, self.patch_size[0] - H % self.patch_size[0],
- 0, 0))
-
- # 下采样patch_size倍
- x = self.proj(x)
- _, _, H, W = x.shape
- # flatten: [B, C, H, W] -> [B, C, HW]
- # transpose: [B, C, HW] -> [B, HW, C]
- x = x.flatten(2).transpose(1, 2)
- x = self.norm(x)
- return x, H, W # 这里是经过padding的H和W
-
-
- class PatchMerging(nn.Module):
- r""" Patch Merging Layer.
- Args:
- dim (int): Number of input channels.
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
-
- def __init__(self, dim, norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.norm = norm_layer(4 * dim)
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) # 将通道数由4倍变为2倍
-
-
- def forward(self, x, H, W):
- """
- x: B, H*W(L), C,并不知道H和W,所以需要单独传参
- """
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
-
- x = x.view(B, H, W, C)
-
- # padding
- # 因为是下采样两倍,如果输入feature map的H,W不是2的整数倍,需要进行padding
- pad_input = (H % 2 == 1) or (W % 2 == 1)
- if pad_input:
- # 此时(B,H,W,C)依然是从后向前
- # (C_front, C_back, W_left, W_right, H_top, H_bottom)
- # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
- x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
-
- x0 = x[:, 0::2, 0::2, :] # [B, H/2, W/2, C]
- x1 = x[:, 1::2, 0::2, :] # [B, H/2, W/2, C]
- x2 = x[:, 0::2, 1::2, :] # [B, H/2, W/2, C]
- x3 = x[:, 1::2, 1::2, :] # [B, H/2, W/2, C]
- x = torch.cat([x0, x1, x2, x3], -1) # [B, H/2, W/2, 4*C],这里的-1就是在C的维度上拼接
- x = x.view(B, -1, 4 * C) # [B, H/2*W/2, 4*C]
-
- x = self.norm(x)
- x = self.reduction(x) # [B, H/2*W/2, 2*C]
-
- return x
-
-
- class Mlp(nn.Module):
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
- """
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
-
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.drop1 = nn.Dropout(drop)
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop2 = nn.Dropout(drop)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop1(x)
- x = self.fc2(x)
- x = self.drop2(x)
- return x
-
-
- class WindowAttention(nn.Module):
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
- It supports both of shifted and non-shifted window.
- Args:
- dim (int): Number of input channels.
- window_size (tuple[int]): The height and width of the window.
- num_heads (int): Number of attention heads.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- """
-
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):
-
- super().__init__()
- self.dim = dim
- self.window_size = window_size # [Mh, Mw]
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = head_dim ** -0.5
-
- # 每一个head都有自己的relative_position_bias_table
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH]
-
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- # meshgrid生成网格,再通过stack方法拼接
- coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw]
- coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw]
- # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
- relative_coords = relative_coords = coords_flatten.unsqueeze(2) - coords_flatten.unsqueeze(1) # [2, Mh*Mw, Mh*Mw]
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2]
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw]
- # 整个训练当中,window_size大小不变,因此这个索引也不会改变
- self.register_buffer("relative_position_index", relative_position_index)
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim) # 多头融合
- self.proj_drop = nn.Dropout(proj_drop)
-
- nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
- self.softmax = nn.Softmax(dim=-1)
-
- def forward(self, x, mask: Optional[torch.Tensor] = None):
- """
- Args:
- x: input features with shape of (num_windows*B, Mh*Mw, C)
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
- """
- # [batch_size*num_windows, Mh*Mw, total_embed_dim]
- B_, N, C = x.shape
- # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
- # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
- # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- # 通过unbind分别获得qkv
- q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
-
- # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
- # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
-
- # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw]
- # 通过unsqueeze加上一个batch维度
- attn = attn + relative_position_bias.unsqueeze(0)
-
- if mask is not None:
- # mask: [nW, Mh*Mw, Mh*Mw]
- nW = mask.shape[0] # num_windows
- # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
- # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
-
- attn = self.attn_drop(attn)
-
- # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
- # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
-
- class SwinTransformerBlock(nn.Module):
- r""" Swin Transformer Block.
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads.
- window_size (int): Window size.
- shift_size (int): Shift size for SW-MSA.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
-
- # 与Vit的block结构是相同的
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
-
- self.norm1 = norm_layer(dim)
- self.attn = WindowAttention(
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
- attn_drop=attn_drop, proj_drop=drop)
-
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
-
- def forward(self, x, attn_mask):
- # x(B,L,C),因此需要记录h和w
- H, W = self.H, self.W
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- # 残差网络
- shortcut = x
- x = self.norm1(x)
- x = x.view(B, H, W, C)
-
- # pad feature maps to multiples of window size
- # 把feature map给pad到window size的整数倍
- pad_l = pad_t = 0
- pad_r = (self.window_size - W % self.window_size) % self.window_size
- pad_b = (self.window_size - H % self.window_size) % self.window_size
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
- _, Hp, Wp, _ = x.shape
-
- # cyclic shift
- if self.shift_size > 0:
- # 对窗口进行移位。从上向下移,从左往右移,因此是负的
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
- else:
- shifted_x = x
- attn_mask = None
-
- # partition windows
- x_windows = window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C]
-
- # W-MSA/SW-MSA
- attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C]
-
- # 窗口还原
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C]
- shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C]
-
- # shift还原,如果没有shifted就不用还原
- if self.shift_size > 0:
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
- else:
- x = shifted_x
-
- if pad_r > 0 or pad_b > 0:
- # 把前面pad的数据移除掉
- x = x[:, :H, :W, :].contiguous()
-
- x = x.view(B, H * W, C)
-
- # FFN
- x = shortcut + self.drop_path(x)
- x = x + self.drop_path(self.mlp(self.norm2(x)))
-
- return x
-
-
- class BasicLayer(nn.Module):
- """
- A basic Swin Transformer layer for one stage.
- Args:
- dim (int): Number of input channels.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Module | None, optional): 是否需要下采样,在最后一个stage不需要. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- """
-
- def __init__(self, dim, depth, num_heads, window_size,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
- super().__init__()
- self.dim = dim
- self.depth = depth
- self.window_size = window_size
- self.use_checkpoint = use_checkpoint
- self.shift_size = window_size // 2 # 移动尺寸
-
- # 在当前stage之中所有的block
- # 注意每个block中只会有一个MSA,要么W-MSA,要么SW-MSA,所以shift_size为0代表W-MSA,不为0代表SW-MSA
- self.blocks = nn.ModuleList([
- SwinTransformerBlock(
- dim=dim,
- num_heads=num_heads,
- window_size=window_size,
- shift_size=0 if (i % 2 == 0) else self.shift_size,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- drop=drop,
- attn_drop=attn_drop,
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
- norm_layer=norm_layer)
- for i in range(depth)])
-
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(dim=dim, norm_layer=norm_layer)
- else:
- self.downsample = None
-
- def create_mask(self, x, H, W):
- # calculate attention mask for SW-MSA
- # 保证Hp和Wp是window_size的整数倍
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
- # 拥有和feature map一样的通道排列顺序,方便后续window_partition
- img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1]
- # 将窗口切分,然后进行标号
- h_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- w_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- img_mask[:, h, w, :] = cnt
- cnt += 1
-
- mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] 划为窗口
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw] 窗口展平
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
- # [nW, Mh*Mw, Mh*Mw]
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- return attn_mask
-
- def forward(self, x, H, W):
- # 先创建一个mask蒙版,在图像尺寸不变的情况下蒙版也不改变
- attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw]
- for blk in self.blocks:
- blk.H, blk.W = H, W
- # 默认不适用checkpoint方法
- if not torch.jit.is_scripting() and self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x, attn_mask)
- else:
- x = blk(x, attn_mask)
- if self.downsample is not None:
- x = self.downsample(x, H, W)
- # 防止H和W是奇数。如果是奇数,在下采样中经过一次padding就变成偶数了,但如果这里不给H和W加一的话就会导致少一个,如果是偶数,加一除二取整还是不变
- H, W = (H + 1) // 2, (W + 1) // 2
-
- return x, H, W
-
-
- class SwinTransformer(nn.Module):
- r""" Swin Transformer
- A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
- https://arxiv.org/pdf/2103.14030
- Args:
- patch_size (int | tuple(int)): Patch size. Default: 4
- in_chans (int): Number of input image channels. Default: 3
- num_classes (int): Swin Transformer可以作为一个通用骨架,在这里将其用在分类任务中,最后分为num_classes个类. Default: 1000
- embed_dim (int): Patch embedding dimension,就是原文中的C. Default: 96
- depths (tuple(int)): 每个stage中的Swin Transformer Block数.
- num_heads (tuple(int)): 每个stage中用的multi-head数.
- window_size (int): Window size. Default: 7
- mlp_ratio (float): mlp的隐藏层是输入层的多少倍. Default: 4
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
- drop_rate (float): 在pos_drop,mlp及其他地方. Default: 0
- attn_drop_rate (float): Attention dropout rate. Default: 0
- drop_path_rate (float): 每一个Swin Transformer之中,注意它的dropout率是递增的. Default: 0.1
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
- use_checkpoint (bool): 如果使用可以节省内存. Default: False
- """
-
- def __init__(self, patch_size=4, in_chans=3, num_classes=1000,
- embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
- window_size=7, mlp_ratio=4., qkv_bias=True,
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
- norm_layer=nn.LayerNorm, patch_norm=True,
- use_checkpoint=False, **kwargs):
- super().__init__()
-
- self.num_classes = num_classes
- self.num_layers = len(depths)
- self.embed_dim = embed_dim
- self.patch_norm = patch_norm
- # stage4输出特征矩阵的channels
- self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
- self.mlp_ratio = mlp_ratio
- # 对应Patch partition和Linear Embedding
- self.patch_embed = PatchEmbed(
- patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
- norm_layer=norm_layer if self.patch_norm else None)
- self.pos_drop = nn.Dropout(p=drop_rate)
-
- # 在每个block的dropout率,是一个递增序列
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
-
- # build layers
- self.layers = nn.ModuleList()
- for i_layer in range(self.num_layers):
- # num_layers及stage数
- # 与论文不同,代码中的stage包含的是下一层的Patch merging ,因此在最后一个stage中没有Patch merging
- # dim为当前stage的维度,depth是当前stage堆叠多少个block,drop_patch是本层所有block的drop_patch
- # downsample是Patch merging,并且在最后一个stage为None
- layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
- depth=depths[i_layer],
- num_heads=num_heads[i_layer],
- window_size=window_size,
- mlp_ratio=self.mlp_ratio,
- qkv_bias=qkv_bias,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
- use_checkpoint=use_checkpoint)
- self.layers.append(layers)
-
- self.norm = norm_layer(self.num_features)
- self.avgpool = nn.AdaptiveAvgPool1d(1) # 在这个分类任务中,用全局平均池化取代cls token
- self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
-
- self.apply(self._init_weights)
-
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- nn.init.trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
-
- def forward(self, x):
- # x: [B, L, C]
- x, H, W = self.patch_embed(x)
- x = self.pos_drop(x)
-
- # 依次通过每个stage
- for layer in self.layers:
- x, H, W = layer(x, H, W)
-
- x = self.norm(x) # [B, L, C]
- x = self.avgpool(x.transpose(1, 2)) # [B, C, 1]
- x = torch.flatten(x, 1)
- x = self.head(x)
- return x
-
-
- def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):
- # trained ImageNet-1K
- # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
- model = SwinTransformer(in_chans=3,
- patch_size=4,
- window_size=7,
- embed_dim=96,
- depths=(2, 2, 6, 2),
- num_heads=(3, 6, 12, 24),
- num_classes=num_classes,
- **kwargs)
- return model
-
-
- swin_tiny_patch4_window7_224()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。