当前位置:   article > 正文

NLP - 数据预处理 - 文本按句子进行切分_nlp 分句

nlp 分句

NLP - 数据预处理 - 文本按句子进行切分

一、前言

  在学习对数据训练的预处理的时候遇到了一个问题,就是如何将文本按句子切分,使用传统的jieba切割的颗粒度在词的程度,不能满足训练word2vec模型的需要。(py,手动实现自然也是可以,不过感觉斯,有py社区辣么发达相比有人实现了伐,就没有重复造轮子)

  要对文本按句子进行切分,可以使用Python的nltk库,它提供了一个名为sent_tokenize的函数,用于将文本切分为句子。以下是如何实现这个功能的示例:

二、环境配置

1、安装nltk库

pip install nltk
  • 1

2、下载punkt分句器

如果使用的是nltk的第一次,需要下载punkt资源
下载地址:https://www.nltk.org/nltk_data/
手动下载所需punkt包(运行程序也能下载,不过由于一些网络原因比较难直接下载下来)
在这里插入图片描述
将下载的文件解压放到这个文件夹:C:\Users\Admin\AppData\Roaming\nltk_data\tokenizers
在这里插入图片描述
注:如果找不到路径:nltk_data\tokenizers,则手动创建

三、运行程序

使用sent_tokenize函数对文本进行按句切分:

import nltk
from nltk.tokenize import sent_tokenize

# 如果使用的是nltk的第一次,需要下载punkt资源
nltk.download('punkt')

# 示例文本
text = "This is an example sentence. Here is another one! And what about this one? Let's try it out."

# 将文本切分为句子
sentences = sent_tokenize(text)

# 输出切分后的句子
for i, sentence in enumerate(sentences):
    print(f"Sentence {i+1}: {sentence}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

在这个示例中,我们首先从nltk.tokenize模块中导入sent_tokenize函数。然后,我们定义了一个包含多个句子的文本。接下来,我们使用sent_tokenize函数将文本切分为句子,最后输出切分后的句子。

运行参考结果:
在这里插入图片描述

sent_tokenize函数使用预训练的Punkt分句器,它能够处理多种语言,并能很好地处理复杂的句子切分。在使用sent_tokenize时,您还可以通过提供一个可选参数language来指定文本的语言,以便更好地适应不同语言的句子切分规则。例如:

sentences = sent_tokenize(text, language='english')
  • 1

四、额外补充

注:punkt 该库不支持中文,中文分句子比较的是另外一个库:pkuseg
这个库配好环境后下面的就可以直接使用了

import pkuseg

# 示例中文文本
text = "这是一个示例句子。这是另一个!这个怎么样?让我们试试看。"

# 配置pkuseg
seg = pkuseg.pkuseg()

# 将文本切分为句子
sentences = seg.cut(text)

# 输出切分后的句子
for i, sentence in enumerate(sentences):
    print(f"句子 {i + 1}: {sentence}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/543030
推荐阅读
相关标签
  

闽ICP备14008679号