赞
踩
例子描述:
通过用CNN网络对 梵高,莫奈,毕加索,达芬奇 四位画家的作品进行学习,学出一个模型,这个模型具有识别这个四位画家作品的能力。
所需环境:Python3.6 + Tensorflow
如果使用cpu版本,可以参考:https://www.jianshu.com/p/da141c730180
如果使用gpu版本,可以参考:https://www.jianshu.com/p/62d414aa843e
3个步骤:
1. 使用爬虫爬去百度图片
通过chrome开发者工具分析,我们得到一个百度图片的api接口,通过接口的数据可以拿到百度图片的地址,如图:
分析百度图片网站,找到获取图片的接口
用过分析,这个url地址的主要的三个参数是:
我们只要调整这些参数,就可以获取任意的百度图片和图片数量,然后通过python代码爬去图片保存到本地磁盘目录。
新建文件:spider.py
代码如下:
- import requests
- import os
- import urllib
- import json
- #定义下载图片的函数
- def downImg(imgUrl, dirPath, imgName):
- filename = os.path.join(dirPath, imgName)
- try:
- res = requests.get(imgUrl, timeout=15)
- if str(res.status_code)[0] == "4":
- print(str(res.status_code), ":", imgUrl)
- return False
- except Exception as e:
- print("抛出异常:", imgUrl)
- print(e)
- return False
- with open(filename, "wb") as f:
- f.write(res.content)
- return True
-
- words = [["梵高作品",'FG'],['莫奈作品','MN'],['毕加索作品','BJS'],['达芬奇作品','DFQ']] #搜索关键字,如 :梵高作品
- trainPath = "train_data/"
- #如果文件夹不存在,创建文件夹
- if not os.path.exists(trainPath):
- os.mkdir(trainPath)
- for word in words:
- dirPath = trainPath + word[1]
- # 如果文件夹不存在,创建文件夹
- if not os.path.exists(dirPath):
- os.mkdir(dirPath)
- word = urllib.parse.quote(word[0]) #因为是中文,所以要进行urlencode转换
- pn = 30 #当前页的图片数量偏移量,如 60 表示当前页是第二页,图片数的偏移是60
- rn = 30 #每每页返回多少图片,如 30 表示每页三十张图片
- i = 1 #图片编号
- while pn <= 30 * 20: #获取20页的图片,总共600张,建议修改页数,爬去更多一点的图片
- try:
- url = 'https://image.baidu.com/search/acjson?tn=resultjson_com&ipn=rj&ct=201326592&is=&fp=result&queryWord=' + word + '&cl=2&lm=-1&ie=utf-8&oe=utf-8&adpicid=&st=-1&z=&ic=&hd=&latest=©right=&word=' + word + '=&se=&tab=&width=&height=&face=0&istype=2&qc=&nc=1&fr=&expermode=&force=&pn=' + str(
- pn) + '&rn=' + str(rn) + '&gsm=3c&1550715038298='
- jsonBytes = requests.get(url, timeout=10).content # 获取json数据-字节
- jsonData = jsonBytes.decode('utf-8') # json数据-字节转字符串
- print("---------------------------------------------------------")
- jsonData = jsonData.replace("\\'", '') #不加这个字符串替换json.loads时会报错,意思是去掉字符串中的\'
- print(jsonData)
- print("---------------------------------------------------------")
- jsonObj = json.loads(jsonData) # json数据-字符串转对象
- if 'data' in jsonObj:
- for item in jsonObj['data']:
- if 'thumbURL' in item:
- imgName = str(i) + ".jpg"
- downImg(item['thumbURL'], dirPath, imgName) # 下载图片
- print(item['thumbURL'])
- i += 1
- pn += rn # 下一页
- except Exception as e:
- print(e)
代码执行完成后,在当前目录下,我们就得到了后面训练用的样本数据,目录文件如下:
image.png
到此,样本数据就准备好了,下面我们要搭建神经网络了。
2. 搭建神经网络,读取图片,训练,产生模型
这里要用到opencv,所以要安装opencv模块
下载地址 : http://ai-download.xmgc360.com/opencv_python-3.3.0.10-cp36-cp36m-win_amd64.whl
比如下载到 D 盘,然后安装
- # 安装
- pip install D:/opencv_python-3.3.0.10-cp36-cp36m-win_amd64.whl
还需安装 sklearn 模块
pip install sklearn
新建文件 dataset.py ,用于读取图片并预处理,代码如下:
- import cv2
- import os
- import glob
- from sklearn.utils import shuffle
- import numpy as np
- def load_train(train_path, image_size, classes):
- images = []
- labels = []
- img_names = []
- cls = []
- print('Going to read training images')
- for fields in classes:
- index = classes.index(fields)
- print('Now going to read {} files (Index: {})'.format(fields, index))
- path = os.path.join(train_path, fields, '*g')
- files = glob.glob(path)
- for fl in files:
- try:
- #读取图片
- image = cv2.imread(fl)
- #等比例压缩到64*64
- image = cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
- #转为浮点型
- image = image.astype(np.float32)
- #归一化处理
- image = np.multiply(image, 1.0 / 255.0)
- images.append(image)
- label = np.zeros(len(classes))
- label[index] = 1.0
- labels.append(label)
- flbase = os.path.basename(fl)
- img_names.append(flbase)
- cls.append(fields)
- except Exception as e:
- print(e)
-
- images = np.array(images)
- labels = np.array(labels)
- img_names = np.array(img_names)
- cls = np.array(cls)
-
- return images, labels, img_names, cls
-
-
- class DataSet(object):
-
- def __init__(self, images, labels, img_names, cls):
- self._num_examples = images.shape[0]
-
- self._images = images
- self._labels = labels
- self._img_names = img_names
- self._cls = cls
- self._epochs_done = 0
- self._index_in_epoch = 0
-
- @property
- def images(self):
- return self._images
-
- @property
- def labels(self):
- return self._labels
-
- @property
- def img_names(self):
- return self._img_names
-
- @property
- def cls(self):
- return self._cls
-
- @property
- def num_examples(self):
- return self._num_examples
-
- @property
- def epochs_done(self):
- return self._epochs_done
-
- def next_batch(self, batch_size):
- """Return the next `batch_size` examples from this data set."""
- start = self._index_in_epoch
- self._index_in_epoch += batch_size
-
- if self._index_in_epoch > self._num_examples:
- # After each epoch we update this
- self._epochs_done += 1
- start = 0
- self._index_in_epoch = batch_size
- assert batch_size <= self._num_examples
- end = self._index_in_epoch
-
- return self._images[start:end], self._labels[start:end], self._img_names[start:end], self._cls[start:end]
-
-
- def read_train_sets(train_path, image_size, classes, validation_size):
- class DataSets(object):
- pass
- data_sets = DataSets()
-
- images, labels, img_names, cls = load_train(train_path, image_size, classes)
- images, labels, img_names, cls = shuffle(images, labels, img_names, cls)
-
- if isinstance(validation_size, float):
- validation_size = int(validation_size * images.shape[0])
-
- validation_images = images[:validation_size]
- validation_labels = labels[:validation_size]
- validation_img_names = img_names[:validation_size]
- validation_cls = cls[:validation_size]
-
- train_images = images[validation_size:]
- train_labels = labels[validation_size:]
- train_img_names = img_names[validation_size:]
- train_cls = cls[validation_size:]
-
- data_sets.train = DataSet(train_images, train_labels, train_img_names, train_cls)
- data_sets.valid = DataSet(validation_images, validation_labels, validation_img_names, validation_cls)
-
- return data_sets
新建 train.py 文件,搭建神经网络,训练,产生模型,代码如下:
- import dataset
- import tensorflow as tf
- import time
- from datetime import timedelta
- import math
- import random
- import numpy as np
- # conda install --channel https://conda.anaconda.org/menpo opencv3
- #Adding Seed so that random initialization is consistent
- from numpy.random import seed
- seed(10)
- from tensorflow import set_random_seed
- set_random_seed(20)
-
-
- batch_size = 32
-
- #Prepare input data
- classes = ['BJS','DFQ','FG','MN']
- num_classes = len(classes)
-
- # 20% of the data will automatically be used for validation
- validation_size = 0.2
- img_size = 64
- num_channels = 3
- train_path='train_data'
-
- # We shall load all the training and validation images and labels into memory using openCV and use that during training
- data = dataset.read_train_sets(train_path, img_size, classes, validation_size=validation_size)
-
-
- print("Complete reading input data. Will Now print a snippet of it")
- print("Number of files in Training-set:\t\t{}".format(len(data.train.labels)))
- print("Number of files in Validation-set:\t{}".format(len(data.valid.labels)))
-
-
-
- session = tf.Session()
- x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channels], name='x')
-
- ## labels
- y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
- y_true_cls = tf.argmax(y_true, dimension=1)
-
-
-
- ##Network graph params
- filter_size_conv1 = 3
- num_filters_conv1 = 32
-
- filter_size_conv2 = 3
- num_filters_conv2 = 32
-
- filter_size_conv3 = 3
- num_filters_conv3 = 64
-
- fc_layer_size = 1024
-
- def create_weights(shape):
- return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
-
- def create_biases(size):
- return tf.Variable(tf.constant(0.05, shape=[size]))
-
-
-
- def create_convolutional_layer(input,
- num_input_channels,
- conv_filter_size,
- num_filters):
-
- ## We shall define the weights that will be trained using create_weights function. 3 3 3 32
- weights = create_weights(shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters])
- ## We create biases using the create_biases function. These are also trained.
- biases = create_biases(num_filters)
-
- ## Creating the convolutional layer
- layer = tf.nn.conv2d(input=input,
- filter=weights,
- strides=[1, 1, 1, 1],
- padding='SAME')
-
- layer += biases
-
- layer = tf.nn.relu(layer)
-
- ## We shall be using max-pooling.
- layer = tf.nn.max_pool(value=layer,
- ksize=[1, 2, 2, 1],
- strides=[1, 2, 2, 1],
- padding='SAME')
- ## Output of pooling is fed to Relu which is the activation function for us.
- #layer = tf.nn.relu(layer)
-
- return layer
-
-
-
- def create_flatten_layer(layer):
- #We know that the shape of the layer will be [batch_size img_size img_size num_channels]
- # But let's get it from the previous layer.
- layer_shape = layer.get_shape()
- ## Number of features will be img_height * img_width* num_channels. But we shall calculate it in place of hard-coding it.
- num_features = layer_shape[1:4].num_elements()
- ## Now, we Flatten the layer so we shall have to reshape to num_features
- layer = tf.reshape(layer, [-1, num_features])
- return layer
- def create_fc_layer(input,
- num_inputs,
- num_outputs,
- use_relu=True):
- #Let's define trainable weights and biases.
- weights = create_weights(shape=[num_inputs, num_outputs])
- biases = create_biases(num_outputs)
-
- # Fully connected layer takes input x and produces wx+b.Since, these are matrices, we use matmul function in Tensorflow
- layer = tf.matmul(input, weights) + biases
-
- layer=tf.nn.dropout(layer,keep_prob=0.7)
-
- if use_relu:
- layer = tf.nn.relu(layer)
-
-
- return layer
-
- #卷积层1(包括卷积,池化,激活)
- layer_conv1 = create_convolutional_layer(input=x,
- num_input_channels=num_channels,
- conv_filter_size=filter_size_conv1,
- num_filters=num_filters_conv1)
- #卷积层2(包括卷积,池化,激活)
- layer_conv2 = create_convolutional_layer(input=layer_conv1,
- num_input_channels=num_filters_conv1,
- conv_filter_size=filter_size_conv2,
- num_filters=num_filters_conv2)
- #卷积层3(包括卷积,池化,激活)
- layer_conv3= create_convolutional_layer(input=layer_conv2,
- num_input_channels=num_filters_conv2,
- conv_filter_size=filter_size_conv3,
- num_filters=num_filters_conv3)
- #把上面三个卷积层处理后的结果转化为一维向量,才能提供给全连层
- layer_flat = create_flatten_layer(layer_conv3)
- #全连接层1
- layer_fc1 = create_fc_layer(input=layer_flat,
- num_inputs=layer_flat.get_shape()[1:4].num_elements(),
- num_outputs=fc_layer_size,
- use_relu=True)
- #全连接层2
- layer_fc2 = create_fc_layer(input=layer_fc1,
- num_inputs=fc_layer_size,
- num_outputs=num_classes,
- use_relu=False)
-
- y_pred = tf.nn.softmax(layer_fc2,name='y_pred')
-
- y_pred_cls = tf.argmax(y_pred, dimension=1)
- session.run(tf.global_variables_initializer())
- cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,
- labels=y_true)
- cost = tf.reduce_mean(cross_entropy)
- optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
- correct_prediction = tf.equal(y_pred_cls, y_true_cls)
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
-
-
- session.run(tf.global_variables_initializer())
-
-
- def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss,i):
- acc = session.run(accuracy, feed_dict=feed_dict_train)
- val_acc = session.run(accuracy, feed_dict=feed_dict_validate)
- msg = "Training Epoch {0}--- iterations: {1}--- Training Accuracy: {2:>6.1%}, Validation Accuracy: {3:>6.1%}, Validation Loss: {4:.3f}"
- print(msg.format(epoch + 1,i, acc, val_acc, val_loss))
-
- total_iterations = 0
-
- saver = tf.train.Saver()
- def train(num_iteration):
- global total_iterations
-
- for i in range(total_iterations,
- total_iterations + num_iteration):
-
- x_batch, y_true_batch, _, cls_batch = data.train.next_batch(batch_size)
- x_valid_batch, y_valid_batch, _, valid_cls_batch = data.valid.next_batch(batch_size)
-
-
- feed_dict_tr = {x: x_batch,
- y_true: y_true_batch}
- feed_dict_val = {x: x_valid_batch,
- y_true: y_valid_batch}
-
- session.run(optimizer, feed_dict=feed_dict_tr)
-
- if i % int(data.train.num_examples/batch_size) == 0:
- val_loss = session.run(cost, feed_dict=feed_dict_val)
- epoch = int(i / int(data.train.num_examples/batch_size))
-
- show_progress(epoch, feed_dict_tr, feed_dict_val, val_loss,i)
- saver.save(session, './model/painting.ckpt',global_step=i)
-
- total_iterations += num_iteration
-
- train(num_iteration=8000)
-
相关目录
运行 train.py 进行训练 , 如图:
image.png
训练中结果截图:
训练中...
等训练完成后,会传输模型文件,如图:
模型文件
产生模型以后,我们使用最新的模型文件来预测,这里我们使用:
painting.ckpt-7998.meta 存储的是神经网络结构
painting.ckpt-7998.data 模型数据本身
然后在下面的代码里引用
3. 识别与分类
新建文件:predict.py,代码中加载模型,制定预测的文件名 fg_test_1.jpg。
image.png
代码如下:
- import tensorflow as tf
- import numpy as np
- import os,glob,cv2
- import sys,argparse
-
- image_size=64
- num_channels=3
- images = []
-
- path = 'fg_test_1.jpg'
- image = cv2.imread(path)
- # Resizing the image to our desired size and preprocessing will be done exactly as done during training
- image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR)
- images.append(image)
- images = np.array(images, dtype=np.uint8)
- images = images.astype('float32')
- images = np.multiply(images, 1.0/255.0)
- #The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape.
- x_batch = images.reshape(1, image_size,image_size,num_channels)
-
- ## Let us restore the saved model
- sess = tf.Session()
- # Step-1: Recreate the network graph. At this step only graph is created.
- saver = tf.train.import_meta_graph('./model/painting.ckpt-7998.meta')
- # Step-2: Now let's load the weights saved using the restore method.
- saver.restore(sess, './model/painting.ckpt-7998')
- # Accessing the default graph which we have restored
- graph = tf.get_default_graph()
- # Now, let's get hold of the op that we can be processed to get the output.
- # In the original network y_pred is the tensor that is the prediction of the network
- y_pred = graph.get_tensor_by_name("y_pred:0")
-
- ## Let's feed the images to the input placeholders
- x= graph.get_tensor_by_name("x:0")
- y_true = graph.get_tensor_by_name("y_true:0")
- y_test_images = np.zeros((1, 4))
- ### Creating the feed_dict that is required to be fed to calculate y_pred
- feed_dict_testing = {x: x_batch, y_true: y_test_images}
- result=sess.run(y_pred, feed_dict=feed_dict_testing)
- # result is of this format [probabiliy_of_rose probability_of_sunflower]
- # dog [1 0]
- res_label = ['BJS','DFQ','FG','MN']
- print(res_label[result.argmax()])
设定分类参数
预测文件:fg_test_1.jpg,放到当前目录下
fg_test_1.jpg
预测结果如图:
预测代码执行结果
结果是:FG,表示识别成功。
备注:
目录结构如下图:
参考:
https://www.jianshu.com/p/8db0dd959897
https://github.com/xwdlyx/deeplearning/tree/master/Painting%20Classification%20CNN
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。