当前位置:   article > 正文

HashMap源码解析--jdk1.8

hashmap源码解析
  • 技术之路最公平也最残酷的原因是:没有捷径,需要日积月累的积累,以及对技术持久的热情。

总结

1)HashMap的key、value都可以存放null,key不可重复,value可重复,是数组链表红黑树的数据结构。
2)HashMap区别于数组的地方在于能够自动扩展大小,其中关键的方法就是resize()方法,扩容为2倍。
3)HashMap由于本质是数组,在不冲突的情况下,查询效率很高,hash冲突后会形成链表,查找时多一层
遍历,当链表长度到8并且数组长度大于64,转成红黑树存储,提高查询效率。
4)初始化数组时推荐给初始长度,反复扩容会增加时耗,影响性能效率,HashMap需要注意负载因子0.75f,
初始16,当长度大于(16*0.75)12的时候会扩容为32,所以初始长度设置需要却别对待。
5)HashMap是一种散列表,采用(数组 + 链表 + 红黑树)的存储结构。
6)当桶的数量大于64且单个桶中元素的数量大于8时,进行树化。
7)当单个桶中元素数量小于6时,进行反树化。
8)HashMap是非线程安全的容器。
9)HashMap查找添加元素的时间复杂度都为O(1)。

1 概述

  1. HashMap是可以动态扩容的数组,基于数组、链表、红黑树实现的集合。
  2. HashMap支持键值对取值、克隆、序列化,元素无序,key不可重复value可重复,都可为null。
  3. HashMap初始默认长度16,超出扩容2倍,填充因子0.75f。
    4.HashMap当链表的长度大于8的且数组大小大于64时,链表结构转变为红黑树结构。
  • 在JDK1.8之前,HashMap使用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。

  • 下图中代表jdk1.8之前的hashmap结构,左边部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。

  • jdk1.8之前的hashMap结构图
    在这里插入图片描述
    jdk1.8之前的hashmap都采用上图的结构,都是基于一个数组和多个单链表,hash值冲突的时候,就将对应节点以链表的形式存储。如果在一个链表中查找其中一个节点时,将会花费O(n)的查找时间,会有很大的性能损失。到了jdk1.8,当同一个hash值的节点数不小于8时,不再采用单链表形式存储,而是采用红黑树,如下图所示:
    在这里插入图片描述
    Node是HashMap的一个内部类,实现了Map.Entry接口,本质上是一个映射(键值对)。上图中每一个黑圆点就是一个Node对象。来看具体代码:

  • 链表

//Node是单向链表,它实现了Map.Entry接口
static class Node<k,v> implements Map.Entry<k,v> {
    final int hash;
    final K key;
    V value;
    Node<k,v> next;
    //构造函数Hash值 键 值 下一个节点
    Node(int hash, K key, V value, Node<k,v> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
 
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + = + value; }
 
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
 
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    //判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<!--?,?--> e = (Map.Entry<!--?,?-->)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

可以看到,node中包含一个next变量,这个就是链表的关键点,hash结果相同的元素就是通过这个next进行关联的。

  • 红黑树
//红黑树
static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> {
    TreeNode<k,v> parent;  // 父节点
    TreeNode<k,v> left; //左子树
    TreeNode<k,v> right;//右子树
    TreeNode<k,v> prev;    // needed to unlink next upon deletion
    boolean red;    //颜色属性
    TreeNode(int hash, K key, V val, Node<k,v> next) {
        super(hash, key, val, next);
    }
 
    //返回当前节点的根节点
    final TreeNode<k,v> root() {
        for (TreeNode<k,v> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

2 源码

2.1 类的继承关系

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable

  • 1
  • 2

可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示可以进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现了序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。

2.2 类的属性

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;    
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30; 
    // 默认的填充因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于这个值时会转成红黑树;+对应的table的最小大小为64,即MIN_TREEIFY_CAPACITY ;这两个条件都满足,会链表会转红黑树
    static final int TREEIFY_THRESHOLD = 8; 
    // 当桶(bucket)上的结点数小于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table; 
    // 存放具体元素的集
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;   
    // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;
    // 填充因子
    final float loadFactor;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

2.3 类的构造函数

HashMap(int, float)型构造函数

public HashMap(int initialCapacity, float loadFactor) {
    // 初始容量不能小于0,否则报错
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                            initialCapacity);
    // 初始容量不能大于最大值,否则为最大值
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // 填充因子不能小于或等于0,不能为非数字
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                            loadFactor);
    // 初始化填充因子                                        
    this.loadFactor = loadFactor;
    // 初始化threshold大小
    this.threshold = tableSizeFor(initialCapacity);    
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。

static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

说明:>>> 操作符表示无符号右移,高位取0。
tableSizeFor方法解析可以查看此链接:HashMap中 工具方法tableSizeFor的作用

其他的构造方法,如:HashMap(int),HashMap(),HashMap(Map<? extends K>)就不在叙述,感兴趣可以看源码。

2.4 hash算法

在JDK 1.8中,hash方法如下

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

  • 1
  • 2
  • 3
  • 4
  • 5

(1)首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。

(2)在putVal源码中,我们通过(n-1)&hash获取该对象的键在hashmap中的位置。(其中hash的值就是(1)中获得的值)其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算

n:hash槽数组大小;i:Node在数组中的索引值;

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                boolean evict) {
    ...
 
    if ((p = tab[i = (n - 1) & hash]) == null)//获取位置
        tab[i] = newNode(hash, key, value, null);
    ...
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

上述关键代码: i = (n - 1) & hash

  • tab即是table,n是map集合的容量大小,hash是上面方法的返回值。因为通常声明map集合时不会指定大小,或者初始化的时候就创建一个容量很大的map对象,所以这个通过容量大小与key值进行hash的算法在开始的时候只会对低位进行计算,虽然容量的2进制高位一开始都是0,但是key的2进制高位通常是有值的,因此先在hash方法中将key的hashCode右移16位在与自身异或,使得高位也可以参与hash,更大程度上减少了碰撞率。

  • 那么这也就明白了为什么HashMap的数组长度是2的整数幂。比如以初始长度为16为例,16-1 = 15,15的二进制数位00000000 00000000 00001111。可以看出一个奇数二进制最后一位必然位1,当与一个hash值进行与运算时,最后一位可能是0也可能是1。但偶数与一个hash值进行与运算最后一位必然为0,造成有些位置永远映射不上值

  • 但是这时,又出现了一个问题,即使散列函数很松散,但只取最后几位碰撞也会很严重。这时候hash算法的价值就体现出来了:扰动函数

    • hashCode右移16位,正好是32bit的一半。与自己本身做异或操作(相同为0,不同为1)。就是为了混合哈希值的高位和地位,增加低位的随机性。并且混合后的值也变相保持了高位的特征。

在这里插入图片描述
如果不使用 2 的幂次方作为数组的长度会怎么样?

假设我们的数组长度是10,还是上面的公式:
1010 & 101010100101001001000 结果:1000 = 8
1010 & 101000101101001001001 结果:1000 = 8
1010 & 101010101101101001010 结果: 1010 = 10
1010 & 101100100111001101100 结果: 1000 = 8
  • 1
  • 2
  • 3
  • 4
  • 5

^,按位运算符,异或

0 ^ 11
1 ^ 10
0 ^ 00
1 ^ 01

  • 1
  • 2
  • 3
  • 4
  • 5

参考链接:浅谈HashMap中的hash算法

  • 扩容
    下面我们推演一下,当扩容时,原Node节点在新老数组中的位置变化:
    在这里插入图片描述

结论:扩容后,节点的位置有两种可能:

  1. 还在原来的数组索引上
  2. 原索引+扩容的长度

3 重要方法分析

3.1 put方法(10种实现)–增/修改

3.1.1 V put(K key, V value);//map添加元素

首先说明,HashMap并没有直接提供putVal接口给用户调用,而是提供的put方法,而put方法就是通过putVal来插入元素的。

public V put(K key, V value) {
    // 对key的hashCode()做hash 
    return putVal(hash(key), key, value, false, true);  
} 

  • 1
  • 2
  • 3
  • 4
  • 5

putVal方法执行过程可以通过下图来理解:
在这里插入图片描述
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8(且),大于8的话(且Node数组的数量大于64)把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

具体源码如下:

/**
 * 新增元素
 */
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
 /**
 * Implements Map.put and related methods
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * onlyIfAbsent默认传false,覆盖更改现有值
 * onlyIfAbsent传true,不覆盖更改现有值
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //如果table为空 或者 长度为0
    if ((tab = table) == null || (n = tab.length) == 0)
        //扩容
        n = (tab = resize()).length;
    //计算index,并对null做处理 
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        //如果key存在 直接覆盖 value
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            // 将第一个元素赋值给e,用e来记录
            e = p;
        //如果table[i]是红黑树 直接在红黑树中插入
        // hash值不相等,即key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        //如果是链表  则遍历链表
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                     // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) { // existing mapping for key
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调,用来回调移除最早放入Map的对象(LinkedHashMap中实现了,HashMap中为空实现)
    afterNodeInsertion(evict);
    return null;
}

 static final int hash(Object key) {
    int h;
    // h = key.hashCode() 为第一步 取hashCode值
    // h ^ (h >>> 16)  为第二步 高位参与运算
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94

3.1.2 putAll(Map<? extends K, ? extends V> m);//添加Map全部元素

/**
 * 添加Map全部元素
 */
public void putAll(Map<? extends K, ? extends V> m) {
    putMapEntries(m, true);
}
 /**
 * Implements Map.putAll and Map constructor
 * @param m the map
 * @param evict false when initially constructing this map, else
 * true (relayed to method afterNodeInsertion).
 */
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
             // 未初始化,s为m的实际元素个数
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                     (int)ft : MAXIMUM_CAPACITY);
            // 计算得到的t大于阈值,则初始化阈值
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}
/**
 * 扩容
 * ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
 * ②.每次扩展的时候,都是扩展2倍:16、32、64、128...
*  ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍(2次幂)的位置。
 * @return the table
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;//oldTab指向hash桶数组
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {//如果oldCap大于的话,就是hash桶数组不为空
        if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组
    table = newTab;//将新数组的值复制给旧的hash桶数组
    if (oldTab != null) {//进行扩容操作,复制Node对象值到新的hash桶数组
        //把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e
                oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc
                if (e.next == null)//如果e后面没有Node结点
                    newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置
                else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order 链表优化重hash的代码块
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;//将Node结点的next赋值给next
                        if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0   原索引
                            if (loTail == null)//如果loTail为null
                                loHead = e;//将e结点赋值给loHead
                            else
                                loTail.next = e;//否则将e赋值给loTail.next
                            loTail = e;//然后将e复制给loTail
                        }
                        // 原索引+oldCap
                        else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0
                            if (hiTail == null)//如果hiTail为null
                                hiHead = e;//将e赋值给hiHead
                            else
                                hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next
                            hiTail = e;//将e复制个hiTail
                        }
                    } while ((e = next) != null);//直到e为空
                    //原索引放到bucket里
                    if (loTail != null) {//如果loTail不为空
                        loTail.next = null;//将loTail.next设置为空
                        newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处
                    }
                    //原索引+oldCap放到bucket里
                    if (hiTail != null) {//如果hiTail不为空
                        hiTail.next = null;//将hiTail.next赋值为空
                        newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度]
                    }
                }
            }
        }
    }
    return newTab;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122

3.1.3 V putIfAbsent(K key, V value);//如果key存在,则跳过,不覆盖value值,onlyIfAbsent传true,不覆盖更改现有值

/**
 * 如果key存在则跳过,不覆盖value值,onlyIfAbsent传true,不覆盖更改现有值
 * 如果key不存在则put
 * @param key
 * @param value
 * @return
 */
@Override
public V putIfAbsent(K key, V value) {
    return putVal(hash(key), key, value, true, true);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
/**
 * 如果key存在则跳过,不覆盖value值,onlyIfAbsent传true,不覆盖更改现有值
 * 如果key不存在则put
 * @param key
 * @param value
 * @return
 */
@Override
public V putIfAbsent(K key, V value) {
    return putVal(hash(key), key, value, true, true);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

3.1.4 merge(K key, V value,BiFunction<? super V, ? super V, ? extends V> remappingFunction);//用某种方法更新原来的value值

/**
 * 用某种方法更新原来的value值
 * BiFunction支持函数式变成,lambda表达式,如:String::concat拼接
 * @param key
 * @param value
 * @param remappingFunction
 * @return
 */
@Override
public V merge(K key, V value,
               BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
    if (value == null)
        throw new NullPointerException();
    if (remappingFunction == null)
        throw new NullPointerException();
    int hash = hash(key);
    Node<K,V>[] tab; Node<K,V> first; int n, i;
    int binCount = 0;
    TreeNode<K,V> t = null;
    Node<K,V> old = null;// 该key原来的节点对象
    if (size > threshold || (tab = table) == null ||
        (n = tab.length) == 0)//判断是否需要扩容
        n = (tab = resize()).length;
    if ((first = tab[i = (n - 1) & hash]) != null) {
        if (first instanceof TreeNode)// 取出old Node对象
            old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
        else {
            Node<K,V> e = first; K k;
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    old = e;
                    break;
                }
                ++binCount;
            } while ((e = e.next) != null);
        }
    }
    if (old != null) {//如果 old Node 存在
        V v;
        if (old.value != null)
            // 如果old存在,执行lambda,算出新的val并写入old Node后返回。
            v = remappingFunction.apply(old.value, value);
        else
            v = value;
        if (v != null) {
            old.value = v;
            afterNodeAccess(old);
        }
        else
            removeNode(hash, key, null, false, true);
        return v;
    }
    if (value != null) {
        //如果old不存在且传入的newVal不为null,则put新的kv
        if (t != null)
            t.putTreeVal(this, tab, hash, key, value);
        else {
            tab[i] = newNode(hash, key, value, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
    }
    return value;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68

3.1.5 compute(K key,BiFunction<? super K, ? super V, ? extends V> remappingFunction);//根据已知的 k v 算出新的v并put

/**
 * 根据已知的 k v 算出新的v并put。
 * 如果根据key获取的oldVal为空则lambda中涉及到oldVal的计算会报空指针。
 * 如:map.compute("a", (key, oldVal) -> oldVal + 1); 如果oldVal为null,则空指针
 * 源码和merge类似
 * BiFunction返回值作为新的value,BiFunction有二个参数
 * @param key
 * @param remappingFunction
 * @return
 */
@Override
public V compute(K key,
                 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
    if (remappingFunction == null)
        throw new NullPointerException();
    int hash = hash(key);
    Node<K,V>[] tab; Node<K,V> first; int n, i;
    int binCount = 0;
    TreeNode<K,V> t = null;
    Node<K,V> old = null;
    if (size > threshold || (tab = table) == null ||
        (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((first = tab[i = (n - 1) & hash]) != null) {
        if (first instanceof TreeNode)
            old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
        else {
            Node<K,V> e = first; K k;
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    old = e;
                    break;
                }
                ++binCount;
            } while ((e = e.next) != null);
        }
    }
    V oldValue = (old == null) ? null : old.value;
    V v = remappingFunction.apply(key, oldValue);
    if (old != null) {
        if (v != null) {
            old.value = v;
            afterNodeAccess(old);
        }
        else
            removeNode(hash, key, null, false, true);
    }
    else if (v != null) {
        if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
    }
    return v;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

3.1.6 computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction);//当key不存在时才put,如果key存在则无效

 /**
 * 当key不存在时才put,如果key存在则无效
 * 如:computeIfAbsent(keyC, k -> genValue(k));
 * Function返回值作为新的value,Function只有一个参数
 * @param key
 * @param mappingFunction
 * @return
 */
@Override
public V computeIfAbsent(K key,
                         Function<? super K, ? extends V> mappingFunction) {
    if (mappingFunction == null)
        throw new NullPointerException();
    int hash = hash(key);
    Node<K,V>[] tab; Node<K,V> first; int n, i;
    int binCount = 0;
    TreeNode<K,V> t = null;
    Node<K,V> old = null;
    if (size > threshold || (tab = table) == null ||
        (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((first = tab[i = (n - 1) & hash]) != null) {
        if (first instanceof TreeNode)
            old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
        else {
            Node<K,V> e = first; K k;
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    old = e;
                    break;
                }
                ++binCount;
            } while ((e = e.next) != null);
        }
        V oldValue;
        if (old != null && (oldValue = old.value) != null) {
            afterNodeAccess(old);
            return oldValue;
        }
    }
    V v = mappingFunction.apply(key);
    if (v == null) {
        return null;
    } else if (old != null) {
        old.value = v;
        afterNodeAccess(old);
        return v;
    }
    else if (t != null)
        t.putTreeVal(this, tab, hash, key, v);
    else {
        tab[i] = newNode(hash, key, v, first);
        if (binCount >= TREEIFY_THRESHOLD - 1)
            treeifyBin(tab, hash);
    }
    ++modCount;
    ++size;
    afterNodeInsertion(true);
    return v;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

3.1.7 computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction);//compute方法的补充,如果key存在,则覆盖新的BiFunction计算出的value值,如果不存在则跳过

/**
 * compute方法的补充,如果key存在,则覆盖新的BiFunction计算出的value值,如果不存在则跳过
 * @param key
 * @param remappingFunction
 * @return
 */
public V computeIfPresent(K key,
                          BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
    if (remappingFunction == null)
        throw new NullPointerException();
    Node<K,V> e; V oldValue;
    int hash = hash(key);
    if ((e = getNode(hash, key)) != null &&
        (oldValue = e.value) != null) {
        V v = remappingFunction.apply(key, oldValue);
        if (v != null) {
            e.value = v;
            afterNodeAccess(e);
            return v;
        }
        else
            removeNode(hash, key, null, false, true);
    }
    return null;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

3.1.8 V replace(K key, V value);//替换新值

/**
 * 如果key存在不为空,则替换新的value值
 */
@Override
public V replace(K key, V value) {
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) != null) {
        V oldValue = e.value;
        e.value = value;
        afterNodeAccess(e);
        return oldValue;
    }
    return null;
}



final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // table已经初始化,长度大于0,根据hash寻找table中的项也不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 桶中第一项(数组元素)相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个结点
        if ((e = first.next) != null) {
            // 为红黑树结点
            if (first instanceof TreeNode)
                // 在红黑树中查找
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 否则,在链表中查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

3.1.9 replace(K key, V oldValue, V newValue);//判断oldValue是否是当前key的值,再替换新值

/**
 * 如果key存在不为空并且oldValue等于当前key的值,则替换新的value值
 */
@Override
public boolean replace(K key, V oldValue, V newValue) {
    Node<K,V> e; V v;
    if ((e = getNode(hash(key), key)) != null &&
        ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
        e.value = newValue;
        afterNodeAccess(e);
        return true;
    }
    return false;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

3.1.10 replaceAll(BiFunction<? super K, ? super V, ? extends V> function);//替换新值

/**
 * 根据lambda函数替换符合规则的值
 */
@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
    Node<K,V>[] tab;
    if (function == null)
        throw new NullPointerException();
    if (size > 0 && (tab = table) != null) {
        int mc = modCount;
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                e.value = function.apply(e.key, e.value);
            }
        }
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

总结:
   正常情况下会扩容2倍,特殊情况下(新扩展数组大小已经达到了最大值)则只取最大值1 << 30。

3.2.remove方法(2种重载实现)–删

3.2.1 V remove(Object key); //根据key 删除元素

/**
 * 根据key 删除元素
 */
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}/**
 * Implements Map.remove and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to match if matchValue, else ignored
 * @param matchValue if true only remove if value is equal
 * @param movable if false do not move other nodes while removing
 * @return the node, or null if none
 */
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

3.2.2 remove(Object key, Object value); //根据key,value 删除元素

 /**
 * 根据key,value 删除元素 
 */
   @Override
public boolean remove(Object key, Object value) {
    return removeNode(hash(key), key, value, true, true) != null;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3.3 get方法(2种实现)–查

/**
 * 返回指定的值
 */
public V get(Object key) {
     Node<K,V> e;
     return (e = getNode(hash(key), key)) == null ? null : e.value;
}
        
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // table已经初始化,长度大于0,根据hash寻找table中的项也不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 桶中第一项(数组元素)相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个结点
        if ((e = first.next) != null) {
            // 为红黑树结点
            if (first instanceof TreeNode)
                // 在红黑树中查找
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 否则,在链表中查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}        

/**
* @author jiaxiaoxian
* @date 2019年2月12日 
* 如果key不为空则返回key的值,否则返回默认值
 */
    @Override
        public V getOrDefault(Object key, V defaultValue) {
                Node<K,V> e;
                return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
        }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

3.4 resize方法

①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
②.每次扩展的时候,都是扩展2倍;
③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;//oldTab指向hash桶数组
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {//如果oldCap不为空的话,就是hash桶数组不为空
        if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值
            threshold = Integer.MAX_VALUE;
            return oldTab;//返回
        }//如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组
    table = newTab;//将新数组的值复制给旧的hash桶数组
    if (oldTab != null) {//进行扩容操作,复制Node对象值到新的hash桶数组
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e
                oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc
                if (e.next == null)//如果e后面没有Node结点
                    newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置
                else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;//将Node结点的next赋值给next
                        if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0
                            if (loTail == null)//如果loTail为null
                                loHead = e;//将e结点赋值给loHead
                            else
                                loTail.next = e;//否则将e赋值给loTail.next
                            loTail = e;//然后将e复制给loTail
                        }
                        else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0
                            if (hiTail == null)//如果hiTail为null
                                hiHead = e;//将e赋值给hiHead
                            else
                                hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next
                            hiTail = e;//将e复制个hiTail
                        }
                    } while ((e = next) != null);//直到e为空
                    if (loTail != null) {//如果loTail不为空
                        loTail.next = null;//将loTail.next设置为空
                        newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处
                    }
                    if (hiTail != null) {//如果hiTail不为空
                        hiTail.next = null;//将hiTail.next赋值为空
                        newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度]
                    }
                }
            }
        }
    }
    return newTab;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74

扩容时如果Node为TreeNode(红黑树的节点),具体代码解析:HashMap-split()方法源码简读(JDK1.8)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/564420
推荐阅读
  

闽ICP备14008679号