赞
踩
1)HashMap的key、value都可以存放null,key不可重复,value可重复,是数组链表红黑树的数据结构。
2)HashMap区别于数组的地方在于能够自动扩展大小,其中关键的方法就是resize()方法,扩容为2倍。
3)HashMap由于本质是数组,在不冲突的情况下,查询效率很高,hash冲突后会形成链表,查找时多一层
遍历,当链表长度到8并且数组长度大于64,转成红黑树存储,提高查询效率。
4)初始化数组时推荐给初始长度,反复扩容会增加时耗,影响性能效率,HashMap需要注意负载因子0.75f,
初始16,当长度大于(16*0.75)12的时候会扩容为32,所以初始长度设置需要却别对待。
5)HashMap是一种散列表,采用(数组 + 链表 + 红黑树)的存储结构。
6)当桶的数量大于64且单个桶中元素的数量大于8时,进行树化。
7)当单个桶中元素数量小于6时,进行反树化。
8)HashMap是非线程安全的容器。
9)HashMap查找添加元素的时间复杂度都为O(1)。
在JDK1.8之前,HashMap使用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。
下图中代表jdk1.8之前的hashmap结构,左边部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。
jdk1.8之前的hashMap结构图
jdk1.8之前的hashmap都采用上图的结构,都是基于一个数组和多个单链表,hash值冲突的时候,就将对应节点以链表的形式存储。如果在一个链表中查找其中一个节点时,将会花费O(n)的查找时间,会有很大的性能损失。到了jdk1.8,当同一个hash值的节点数不小于8时,不再采用单链表形式存储,而是采用红黑树,如下图所示:
Node是HashMap的一个内部类,实现了Map.Entry接口,本质上是一个映射(键值对)。上图中每一个黑圆点就是一个Node对象。来看具体代码:
链表
//Node是单向链表,它实现了Map.Entry接口 static class Node<k,v> implements Map.Entry<k,v> { final int hash; final K key; V value; Node<k,v> next; //构造函数Hash值 键 值 下一个节点 Node(int hash, K key, V value, Node<k,v> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + = + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } //判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<!--?,?--> e = (Map.Entry<!--?,?-->)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
可以看到,node中包含一个next变量,这个就是链表的关键点,hash结果相同的元素就是通过这个next进行关联的。
//红黑树 static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> { TreeNode<k,v> parent; // 父节点 TreeNode<k,v> left; //左子树 TreeNode<k,v> right;//右子树 TreeNode<k,v> prev; // needed to unlink next upon deletion boolean red; //颜色属性 TreeNode(int hash, K key, V val, Node<k,v> next) { super(hash, key, val, next); } //返回当前节点的根节点 final TreeNode<k,v> root() { for (TreeNode<k,v> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } }
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示可以进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现了序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { // 序列号 private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认的填充因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 当桶(bucket)上的结点数大于这个值时会转成红黑树;+对应的table的最小大小为64,即MIN_TREEIFY_CAPACITY ;这两个条件都满足,会链表会转红黑树 static final int TREEIFY_THRESHOLD = 8; // 当桶(bucket)上的结点数小于这个值时树转链表 static final int UNTREEIFY_THRESHOLD = 6; // 桶中结构转化为红黑树对应的table的最小大小 static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组,总是2的幂次倍 transient Node<k,v>[] table; // 存放具体元素的集 transient Set<map.entry<k,v>> entrySet; // 存放元素的个数,注意这个不等于数组的长度。 transient int size; // 每次扩容和更改map结构的计数器 transient int modCount; // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容 int threshold; // 填充因子 final float loadFactor; }
HashMap(int, float)型构造函数
public HashMap(int initialCapacity, float loadFactor) { // 初始容量不能小于0,否则报错 if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); // 初始容量不能大于最大值,否则为最大值 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // 填充因子不能小于或等于0,不能为非数字 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // 初始化填充因子 this.loadFactor = loadFactor; // 初始化threshold大小 this.threshold = tableSizeFor(initialCapacity); }
tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
说明:>>> 操作符表示无符号右移,高位取0。
tableSizeFor方法解析可以查看此链接:HashMap中 工具方法tableSizeFor的作用
其他的构造方法,如:HashMap(int),HashMap(),HashMap(Map<? extends K>)就不在叙述,感兴趣可以看源码。
在JDK 1.8中,hash方法如下
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
(1)首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。
(2)在putVal源码中,我们通过(n-1)&hash获取该对象的键在hashmap中的位置。(其中hash的值就是(1)中获得的值)其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算。
n:hash槽数组大小;i:Node在数组中的索引值;
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
...
if ((p = tab[i = (n - 1) & hash]) == null)//获取位置
tab[i] = newNode(hash, key, value, null);
...
}
上述关键代码: i = (n - 1) & hash
tab即是table,n是map集合的容量大小,hash是上面方法的返回值。因为通常声明map集合时不会指定大小,或者初始化的时候就创建一个容量很大的map对象,所以这个通过容量大小与key值进行hash的算法在开始的时候只会对低位进行计算,虽然容量的2进制高位一开始都是0,但是key的2进制高位通常是有值的,因此先在hash方法中将key的hashCode右移16位在与自身异或,使得高位也可以参与hash,更大程度上减少了碰撞率。
那么这也就明白了为什么HashMap的数组长度是2的整数幂。比如以初始长度为16为例,16-1 = 15,15的二进制数位00000000 00000000 00001111。可以看出一个奇数二进制最后一位必然位1,当与一个hash值进行与运算时,最后一位可能是0也可能是1。但偶数与一个hash值进行与运算最后一位必然为0,造成有些位置永远映射不上值。
但是这时,又出现了一个问题,即使散列函数很松散,但只取最后几位碰撞也会很严重。这时候hash算法的价值就体现出来了:扰动函数
如果不使用 2 的幂次方作为数组的长度会怎么样?
假设我们的数组长度是10,还是上面的公式:
1010 & 101010100101001001000 结果:1000 = 8
1010 & 101000101101001001001 结果:1000 = 8
1010 & 101010101101101001010 结果: 1010 = 10
1010 & 101100100111001101100 结果: 1000 = 8
^,按位运算符,异或
0 ^ 1 得 1
1 ^ 1 得 0
0 ^ 0 得 0
1 ^ 0 得 1
参考链接:浅谈HashMap中的hash算法
结论:扩容后,节点的位置有两种可能:
首先说明,HashMap并没有直接提供putVal接口给用户调用,而是提供的put方法,而put方法就是通过putVal来插入元素的。
public V put(K key, V value) {
// 对key的hashCode()做hash
return putVal(hash(key), key, value, false, true);
}
putVal方法执行过程可以通过下图来理解:
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8(且),大于8的话(且Node数组的数量大于64)把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
具体源码如下:
/** * 新增元素 */ public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } /** * Implements Map.put and related methods * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * onlyIfAbsent默认传false,覆盖更改现有值 * onlyIfAbsent传true,不覆盖更改现有值 * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //如果table为空 或者 长度为0 if ((tab = table) == null || (n = tab.length) == 0) //扩容 n = (tab = resize()).length; //计算index,并对null做处理 // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中) if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 桶中已经存在元素 else { Node<K,V> e; K k; //如果key存在 直接覆盖 value // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 将第一个元素赋值给e,用e来记录 e = p; //如果table[i]是红黑树 直接在红黑树中插入 // hash值不相等,即key不相等;为红黑树结点 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //如果是链表 则遍历链表 else { // 在链表最末插入结点 for (int binCount = 0; ; ++binCount) { // 到达链表的尾部 if ((e = p.next) == null) { // 在尾部插入新结点 p.next = newNode(hash, key, value, null); // 结点数量达到阈值,转化为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); // 跳出循环 break; } // 判断链表中结点的key值与插入的元素的key值是否相等 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 相等,跳出循环 break; // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表 p = e; } } // 表示在桶中找到key值、hash值与插入元素相等的结点 if (e != null) { // existing mapping for key // 记录e的value V oldValue = e.value; // onlyIfAbsent为false或者旧值为null if (!onlyIfAbsent || oldValue == null) //用新值替换旧值 e.value = value; // 访问后回调 afterNodeAccess(e); // 返回旧值 return oldValue; } } // 结构性修改 ++modCount; // 实际大小大于阈值则扩容 if (++size > threshold) resize(); // 插入后回调,用来回调移除最早放入Map的对象(LinkedHashMap中实现了,HashMap中为空实现) afterNodeInsertion(evict); return null; } static final int hash(Object key) { int h; // h = key.hashCode() 为第一步 取hashCode值 // h ^ (h >>> 16) 为第二步 高位参与运算 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
/** * 添加Map全部元素 */ public void putAll(Map<? extends K, ? extends V> m) { putMapEntries(m, true); } /** * Implements Map.putAll and Map constructor * @param m the map * @param evict false when initially constructing this map, else * true (relayed to method afterNodeInsertion). */ final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { // 判断table是否已经初始化 if (table == null) { // pre-size // 未初始化,s为m的实际元素个数 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // 计算得到的t大于阈值,则初始化阈值 if (t > threshold) threshold = tableSizeFor(t); } // 已初始化,并且m元素个数大于阈值,进行扩容处理 else if (s > threshold) resize(); // 将m中的所有元素添加至HashMap中 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } /** * 扩容 * ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; * ②.每次扩展的时候,都是扩展2倍:16、32、64、128... * ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍(2次幂)的位置。 * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table;//oldTab指向hash桶数组 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) {//如果oldCap大于的话,就是hash桶数组不为空 if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值 threshold = Integer.MAX_VALUE; return oldTab; } //如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16,就扩充为原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //计算新的resize上限 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组 table = newTab;//将新数组的值复制给旧的hash桶数组 if (oldTab != null) {//进行扩容操作,复制Node对象值到新的hash桶数组 //把每个bucket都移动到新的buckets中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc if (e.next == null)//如果e后面没有Node结点 newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置 else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order 链表优化重hash的代码块 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//将Node结点的next赋值给next if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0 原索引 if (loTail == null)//如果loTail为null loHead = e;//将e结点赋值给loHead else loTail.next = e;//否则将e赋值给loTail.next loTail = e;//然后将e复制给loTail } // 原索引+oldCap else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0 if (hiTail == null)//如果hiTail为null hiHead = e;//将e赋值给hiHead else hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next hiTail = e;//将e复制个hiTail } } while ((e = next) != null);//直到e为空 //原索引放到bucket里 if (loTail != null) {//如果loTail不为空 loTail.next = null;//将loTail.next设置为空 newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处 } //原索引+oldCap放到bucket里 if (hiTail != null) {//如果hiTail不为空 hiTail.next = null;//将hiTail.next赋值为空 newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度] } } } } } return newTab; }
/**
* 如果key存在则跳过,不覆盖value值,onlyIfAbsent传true,不覆盖更改现有值
* 如果key不存在则put
* @param key
* @param value
* @return
*/
@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}
/**
* 如果key存在则跳过,不覆盖value值,onlyIfAbsent传true,不覆盖更改现有值
* 如果key不存在则put
* @param key
* @param value
* @return
*/
@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}
/** * 用某种方法更新原来的value值 * BiFunction支持函数式变成,lambda表达式,如:String::concat拼接 * @param key * @param value * @param remappingFunction * @return */ @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { if (value == null) throw new NullPointerException(); if (remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K,V>[] tab; Node<K,V> first; int n, i; int binCount = 0; TreeNode<K,V> t = null; Node<K,V> old = null;// 该key原来的节点对象 if (size > threshold || (tab = table) == null || (n = tab.length) == 0)//判断是否需要扩容 n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode)// 取出old Node对象 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); else { Node<K,V> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } } if (old != null) {//如果 old Node 存在 V v; if (old.value != null) // 如果old存在,执行lambda,算出新的val并写入old Node后返回。 v = remappingFunction.apply(old.value, value); else v = value; if (v != null) { old.value = v; afterNodeAccess(old); } else removeNode(hash, key, null, false, true); return v; } if (value != null) { //如果old不存在且传入的newVal不为null,则put新的kv if (t != null) t.putTreeVal(this, tab, hash, key, value); else { tab[i] = newNode(hash, key, value, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return value; }
/** * 根据已知的 k v 算出新的v并put。 * 如果根据key获取的oldVal为空则lambda中涉及到oldVal的计算会报空指针。 * 如:map.compute("a", (key, oldVal) -> oldVal + 1); 如果oldVal为null,则空指针 * 源码和merge类似 * BiFunction返回值作为新的value,BiFunction有二个参数 * @param key * @param remappingFunction * @return */ @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K,V>[] tab; Node<K,V> first; int n, i; int binCount = 0; TreeNode<K,V> t = null; Node<K,V> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); else { Node<K,V> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } } V oldValue = (old == null) ? null : old.value; V v = remappingFunction.apply(key, oldValue); if (old != null) { if (v != null) { old.value = v; afterNodeAccess(old); } else removeNode(hash, key, null, false, true); } else if (v != null) { if (t != null) t.putTreeVal(this, tab, hash, key, v); else { tab[i] = newNode(hash, key, v, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return v; }
/** * 当key不存在时才put,如果key存在则无效 * 如:computeIfAbsent(keyC, k -> genValue(k)); * Function返回值作为新的value,Function只有一个参数 * @param key * @param mappingFunction * @return */ @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { if (mappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K,V>[] tab; Node<K,V> first; int n, i; int binCount = 0; TreeNode<K,V> t = null; Node<K,V> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); else { Node<K,V> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } V oldValue; if (old != null && (oldValue = old.value) != null) { afterNodeAccess(old); return oldValue; } } V v = mappingFunction.apply(key); if (v == null) { return null; } else if (old != null) { old.value = v; afterNodeAccess(old); return v; } else if (t != null) t.putTreeVal(this, tab, hash, key, v); else { tab[i] = newNode(hash, key, v, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); return v; }
/** * compute方法的补充,如果key存在,则覆盖新的BiFunction计算出的value值,如果不存在则跳过 * @param key * @param remappingFunction * @return */ public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); Node<K,V> e; V oldValue; int hash = hash(key); if ((e = getNode(hash, key)) != null && (oldValue = e.value) != null) { V v = remappingFunction.apply(key, oldValue); if (v != null) { e.value = v; afterNodeAccess(e); return v; } else removeNode(hash, key, null, false, true); } return null; }
/** * 如果key存在不为空,则替换新的value值 */ @Override public V replace(K key, V value) { Node<K,V> e; if ((e = getNode(hash(key), key)) != null) { V oldValue = e.value; e.value = value; afterNodeAccess(e); return oldValue; } return null; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; // table已经初始化,长度大于0,根据hash寻找table中的项也不为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 桶中第一项(数组元素)相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个结点 if ((e = first.next) != null) { // 为红黑树结点 if (first instanceof TreeNode) // 在红黑树中查找 return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 否则,在链表中查找 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
/**
* 如果key存在不为空并且oldValue等于当前key的值,则替换新的value值
*/
@Override
public boolean replace(K key, V oldValue, V newValue) {
Node<K,V> e; V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}
/** * 根据lambda函数替换符合规则的值 */ @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { Node<K,V>[] tab; if (function == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) { e.value = function.apply(e.key, e.value); } } if (modCount != mc) throw new ConcurrentModificationException(); } }
总结:
正常情况下会扩容2倍,特殊情况下(新扩展数组大小已经达到了最大值)则只取最大值1 << 30。
/** * 根据key 删除元素 */ public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } /** * Implements Map.remove and related methods * * @param hash hash for key * @param key the key * @param value the value to match if matchValue, else ignored * @param matchValue if true only remove if value is equal * @param movable if false do not move other nodes while removing * @return the node, or null if none */ final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
/**
* 根据key,value 删除元素
*/
@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}
/** * 返回指定的值 */ public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; // table已经初始化,长度大于0,根据hash寻找table中的项也不为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 桶中第一项(数组元素)相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个结点 if ((e = first.next) != null) { // 为红黑树结点 if (first instanceof TreeNode) // 在红黑树中查找 return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 否则,在链表中查找 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } /** * @author jiaxiaoxian * @date 2019年2月12日 * 如果key不为空则返回key的值,否则返回默认值 */ @Override public V getOrDefault(Object key, V defaultValue) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; }
①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
②.每次扩展的时候,都是扩展2倍;
③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table;//oldTab指向hash桶数组 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) {//如果oldCap不为空的话,就是hash桶数组不为空 if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值 threshold = Integer.MAX_VALUE; return oldTab;//返回 }//如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组 table = newTab;//将新数组的值复制给旧的hash桶数组 if (oldTab != null) {//进行扩容操作,复制Node对象值到新的hash桶数组 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc if (e.next == null)//如果e后面没有Node结点 newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置 else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//将Node结点的next赋值给next if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0 if (loTail == null)//如果loTail为null loHead = e;//将e结点赋值给loHead else loTail.next = e;//否则将e赋值给loTail.next loTail = e;//然后将e复制给loTail } else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0 if (hiTail == null)//如果hiTail为null hiHead = e;//将e赋值给hiHead else hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next hiTail = e;//将e复制个hiTail } } while ((e = next) != null);//直到e为空 if (loTail != null) {//如果loTail不为空 loTail.next = null;//将loTail.next设置为空 newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处 } if (hiTail != null) {//如果hiTail不为空 hiTail.next = null;//将hiTail.next赋值为空 newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度] } } } } } return newTab; }
扩容时如果Node为TreeNode(红黑树的节点),具体代码解析:HashMap-split()方法源码简读(JDK1.8)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。