赞
踩
关于模型转换后在NPU上运行,看了很多的教程,但是对于不熟悉模型转换的小白,在转换的几个关键点还是要注意的,所以本次的教程从最基本的开始做!!!
(1) RKNN的环境配置好(推荐使用1.7.1版本,环境都没有配置好,那可能要努力一下了,都有教程的)
(2)下载yolov5代码yolov5官方链接,相关的模型下载如图所示,本次教程下载了5s/5m/5x的模型
python环境的配置,推荐使用torch==1.8、torchvision==0.9.1、其他的环境
好啦,我们已经完成了onnx的模型导出,已经完成50%了!!!
注:yolov5工程需要使用pytorch 1.8.0 或 1.9.0 版本才能正常导出。
来,上代码!!!下面的一些参数大家还是懂的哈,不懂的话,那再去看看rknn的文档(相信你们都到这一步了,都懂的)
ONNX_MODEL = 'yolov5s.onnx'
RKNN_MODEL = 'yolov5s.rknn'
IMG_PATH = './bus.jpg'
DATASET = './dataset.txt'
重点来了,绝对的干货!!!换成5m或者5x后,有几个节点需要修改的
(1)yolov5s导出RKNN的节点
ret = rknn.load_onnx(model=ONNX_MODEL,outputs=['396', '440', '484'])
(2)yolov5m导出RKNN的节点
ret = rknn.load_onnx(model=ONNX_MODEL,outputs=['462', '506', '550'])
(3)yolov5x导出RKNN的节点
ret = rknn.load_onnx(model=ONNX_MODEL,outputs=['696', '740', '784'])
注意: 1. 这3个节点的输出shape分别是[1, 3, 80, 80, 85],[1, 3, 40, 40, 85],[1, 3, 20, 20, 85]
2.具体的网络结构可以通过netron查看(哎,我还是截图出来看看吧,谁叫这是保姆教程呢)
Example: 以yolov5s为例,看到里面的transpose算子了吧,是不是有三个!然后看outputs的name是396,再看其他两个transpose的name分别是440和484,好啦,已经很清楚了,在不知道就枪毙掉!!!
ONNX转rknn代码(yolov5s),转5m和5x只需要修改ONNX_MODEL、RKNN_MODEL、导出的节点就行了
还有一个坑,就是在转化的时候保证onnx==1.6.0!!!
- import numpy as np
- import cv2
- from rknn.api import RKNN
- import os
-
-
- ONNX_MODEL = 'yolov5s.onnx'
- RKNN_MODEL = 'yolov5s.rknn'
- IMG_PATH = './bus.jpg'
- DATASET = './dataset.txt'
-
-
-
- if __name__ == '__main__':
-
- # Create RKNN object
- rknn = RKNN()
-
- if not os.path.exists(ONNX_MODEL):
- print('model not exist')
- exit(-1)
-
- # pre-process config
- print('--> Config model')
- rknn.config(reorder_channel='0 1 2',mean_values=[[0, 0, 0]],std_values=[[255, 255, 255]],optimization_level=3,target_platform = 'rk1808',output_optimize=1)
- print('done')
-
- # Load ONNX model
- print('--> Loading model')
- ret = rknn.load_onnx(model=ONNX_MODEL,outputs=['396', '440', '484'])
- if ret != 0:
- print('Load yolov5 failed!')
- exit(ret)
- print('done')
-
- # Build model
- print('--> Building model')
- ret = rknn.build(do_quantization=True, dataset=DATASET)
- if ret != 0:
- print('Build yolov5 failed!')
- exit(ret)
- print('done')
-
- # Export RKNN model
- print('--> Export RKNN model')
- ret = rknn.export_rknn(RKNN_MODEL)
- if ret != 0:
- print('Export yolov5rknn failed!')
- exit(ret)
- print('done')
下图是转好的模型(嘿嘿,还是有亿点点成就的)
准备好图片、模型、推理代码就开始了,是不是很简单(感觉rknn的工具已经很傻瓜化了,就是环境要配置好)
- import os
- import urllib
- import traceback
- import time
- import sys
- import numpy as np
- import cv2
- from rknn.api import RKNN
-
-
- CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
- "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
- "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
- "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
- "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
- "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
- "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
-
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
-
- def xywh2xyxy(x):
- # Convert [x, y, w, h] to [x1, y1, x2, y2]
- y = np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
-
- def process(input, mask, anchors):
-
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
-
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
-
- box_class_probs = sigmoid(input[..., 5:])
-
- box_xy = sigmoid(input[..., :2])*2 - 0.5
-
- col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
- row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
- col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- grid = np.concatenate((col, row), axis=-1)
- box_xy += grid
- box_xy *= int(IMG_SIZE/grid_h)
-
- box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
- box_wh = box_wh * anchors
-
- box = np.concatenate((box_xy, box_wh), axis=-1)
-
- return box, box_confidence, box_class_probs
-
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_classes = np.argmax(box_class_probs, axis=-1)
- box_class_scores = np.max(box_class_probs, axis=-1)
- pos = np.where(box_confidences[...,0] >= BOX_THRESH)
-
-
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
-
- return boxes, classes, scores
-
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
-
- areas = w * h
- order = scores.argsort()[::-1]
-
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
-
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
-
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
-
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
-
-
- def yolov5_post_process(input_data):
- masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]]
-
- boxes, classes, scores = [], [], []
- for input,mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
-
- boxes = np.concatenate(boxes)
- boxes = xywh2xyxy(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
-
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
-
- keep = nms_boxes(b, s)
-
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
-
- if not nclasses and not nscores:
- return None, None, None
-
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
-
- return boxes, classes, scores
-
- def draw(image, boxes, scores, classes):
- """Draw the boxes on the image.
- # Argument:
- image: original image.
- boxes: ndarray, boxes of objects.
- classes: ndarray, classes of objects.
- scores: ndarray, scores of objects.
- all_classes: all classes name.
- """
- for box, score, cl in zip(boxes, scores, classes):
- top, left, right, bottom = box
- # print('class: {}, score: {}'.format(CLASSES[cl], score))
- # print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
- top = int(top)
- left = int(left)
- right = int(right)
- bottom = int(bottom)
-
- cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (top, left - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
-
-
- def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
- # Resize and pad image while meeting stride-multiple constraints
- shape = im.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
-
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
-
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- if shape[::-1] != new_unpad: # resize
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return im, ratio, (dw, dh)
-
-
- if __name__ == '__main__':
-
- RKNN_MODEL = 'yolov5s.rknn'
- IMG_PATH = './bus.jpg'
- BOX_THRESH = 0.5
- NMS_THRESH = 0.45
- IMG_SIZE = 640
-
- # Create RKNN object
- rknn = RKNN()
- ret = rknn.load_rknn(RKNN_MODEL)
- # init runtime environment
- print('--> Init runtime environment')
- ret = rknn.init_runtime(target='rk1808')
- if ret != 0:
- print('Init runtime environment failed')
- exit(ret)
- print('done')
-
- # Set inputs
- img = cv2.imread(IMG_PATH)
- img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = cv2.resize(img,(IMG_SIZE, IMG_SIZE))
-
- # Inference
- print('--> Running model')
- t1 = time.time()
- outputs = rknn.inference(inputs=[img])
- t2 = time.time()
- print('DET_inf_time:', t2 - t1)
-
- # post process
- input0_data = outputs[0]
- input1_data = outputs[1]
- input2_data = outputs[2]
-
-
- input0_data = input0_data.reshape([3, 80, 80, 85])
- input1_data = input1_data.reshape([3, 40, 40, 85])
- input2_data = input2_data.reshape([3, 20, 20, 85])
-
- input_data = list()
- input_data.append(np.transpose(input0_data, (1, 2, 0, 3)))
- input_data.append(np.transpose(input1_data, (1, 2, 0, 3)))
- input_data.append(np.transpose(input2_data, (1, 2, 0, 3)))
-
- boxes, classes, scores = yolov5_post_process(input_data)
- t3 = time.time()
- print('post_process_time:',t3 - t2)
- img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- if boxes is not None:
- draw(img_1, boxes, scores, classes)
- # cv2.imshow("post process result", img_1)
- # cv2.waitKeyEx(0)
- cv2.imwrite('result.jpg', img_1)
- rknn.release()
推理结果如下,结果还是挺不错的
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。