赞
踩
[1] S. Pinker, The Language Instinct: How the Mind Creates Language. Brilliance Audio; Unabridged edition, 2014.
[2] M. D. Hauser, N. Chomsky, and W. T. Fitch, “The faculty of language: what is it, who has it, and how did it evolve?” science, vol. 298, no. 5598, pp. 1569–1579, 2002.
[3] A. M. Turing, “Computing machinery and intelligence,”Mind, vol. LIX, no. 236, pp. 433–460, 1950.
[4] F. Jelinek, Statistical Methods for Speech Recognition.MIT Press, 1998.
[5] J. Gao and C. Lin, “Introduction to the special issue on statistical language modeling,” ACM Trans. Asian Lang. Inf. Process., vol. 3, no. 2, pp. 87–93, 2004.
[6] R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from here?” Proceedings of the IEEE, vol. 88, no. 8, pp. 1270–1278, 2000.
[7] A. Stolcke, “Srilm-an extensible language modeling toolkit,” in Seventh international conference on spoken language processing, 2002.
[8] X. Liu and W. B. Croft, “Statistical language modeling for information retrieval,” Annu. Rev. Inf. Sci. Technol., vol. 39, no. 1, pp. 1–31, 2005.
[9] C. Zhai, Statistical Language Models for Information Retrieval, ser. Synthesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers, 2008.
[10] S. M. Thede and M. P. Harper, “A second-order hidden markov model for part-of-speech tagging,” in 27th Annual Meeting of the Association for Computational Linguistics, University of Maryland, College Park, Maryland, USA, 20-26 June 1999, R. Dale and K. W. Church, Eds.
ACL, 1999, pp. 175–182.
[11] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “A tree-based statistical language model for natural language speech recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 1001–1008, 1989.
[12] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean, “Large language models in machine translation,” in EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, J. Eisner, Ed.
ACL, 2007, pp. 858–867.
[13] S. M. Katz, “Estimation of probabilities from sparse data for the language model component of a speech recognizer,” IEEE Trans. Acoust. Speech Signal Process., vol. 35, no. 3, pp. 400–401, 1987.
[14] W. A. Gale and G. Sampson, “Good-turing frequency estimation without tears,” J. Quant. Linguistics, vol. 2, no. 3, pp. 217–237, 1995.
[15] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language model,” J. Mach. Learn.
Res., vol. 3, pp. 1137–1155, 2003.
[16] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent neural network based language model,” in INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, T. Kobayashi, K. Hirose, and S. Nakamura, Eds.
ISCA, 2010, pp. 1045–1048.-
[17] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent neural network based language modeling in meeting recognition,” in INTERSPEECH 2011, 12th Annual Conference of the International Speech Communication Association, Florence, Italy, August 27-31, 2011.
ISCA, 2011, pp. 2877–2880.
[18] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12, pp. 2493–2537, 2011.
[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds., 2013, pp. 3111–3119.
[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2013.
[21] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds. Association for Computational Linguistics, 2018, pp. 2227–2237.
[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 5998–6008.
[23] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.
Association for Computational Linguistics, 2019, pp.
4171–4186.-
[24] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, 2020, pp. 7871–7880.
[25] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion parameter models with simple and eficient sparsity,” J. Mach. Learn. Res, pp. 1–40, 2021.
[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, p. 9, 2019.
[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692, 2019.
[28] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chafin, A. Stiegler, A. Raja, M. Dey, M. S. Bari, C. Xu, U. Thakker, S. S. Sharma, E. Szczechla, T. Kim, G. Chhablani, N. V. Nayak, D. Datta, J. Chang, M. T. Jiang, H. Wang, M. Manica, S. Shen, Z. X. Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj, J. Rozen, A. Sharma, A. Santilli, T. Févry, J. A. Fries, R. Teehan, T. L. Scao, S. Biderman, L. Gao, T. Wolf, and A. M. Rush, “Multitask prompted training enables zero-shot task generalization,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.
[29] T. Wang, A. Roberts, D. Hesslow, T. L. Scao, H. W.
Chung, I. Beltagy, J. Launay, and C. Raffel, “What language model architecture and pretraining objective works best for zero-shot generalization?” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings of Machine Learning Research, vol. 162, 2022, pp. 22 964–22 984.
[30] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”CoRR, vol. abs/2001.08361, 2020.
[31] M. Shanahan, “Talking about large language models,”CoRR, vol. abs/2212.03551, 2022.-
[32] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H.
Chi, Q. Le, and D. Zhou, “Chain of thought prompting elicits reasoning in large language models,” CoRR, vol.
abs/2201.11903, 2022.
[33] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre, “Training compute-optimal large language models,” vol. abs/2203.15556, 2022.
[34] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, and R. Stojnic, “Galactica: A large language model for science,” CoRR, vol. abs/2211.09085, 2022.
[35] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” ACM Comput. Surv., pp. 195:1–195:35, 2023.
[36] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, H. Peng, J. Li, J. Wu, Z. Liu, P. Xie, C. Xiong, J. Pei, P. S. Yu, and L. Sun, “A comprehensive survey on pretrained foundation models: A history from BERT to chatgpt,” CoRR, vol. abs/2302.09419, 2023.
[37] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang, W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J. Wen, J. Yuan, W. X. Zhao, and J. Zhu, “Pretrained models: Past, present and future,” AI Open, vol. 2, pp. 225–250, 2021.
[38] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained models for natural language processing: A survey,” CoRR, vol. abs/2003.08271, 2020.
[39] S. Altman, “Planning for agi and beyond,” OpenAI Blog, February 2023.
[40] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early experiments with gpt-4,” vol. abs/2303.12712, 2023.
[41] S. Huang, L. Dong, W. Wang, Y. Hao, S. Singhal, S. Ma, T. Lv, L. Cui, O. K. Mohammed, B. Patra, Q. Liu, K. Aggarwal, Z. Chi, J. Bjorck, V. Chaudhary, S. Som, X. Song, and F. Wei, “Language is not all you need: Aligning perception with language models,” CoRR, vol.abs/2302.14045, 2023.-
[42] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226, 2023.
[43] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “Palm-e: An embodied multimodal language model,” arXiv preprint arXiv:2303.03378, 2023.
[44] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan, “Visual chatgpt: Talking, drawing and editing with visual foundation models,” arXiv preprint arXiv:2303.04671, 2023.
[45] OpenAI, “Gpt-4 technical report,” OpenAI, 2023.
[46] Y. Fu, H. Peng, and T. Khot, “How does gpt obtain its ability? tracing emergent abilities of language models to their sources,” Yao Fu’s Notion, Dec 2022.
[47] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large language models,” CoRR, vol. abs/2206.07682, 2022.
[48] J. Li, T. Tang, W. X. Zhao, and J. Wen, “Pretrained language model for text generation: A survey,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, Z. Zhou, Ed.
ijcai.org, 2021, pp. 4492–4499.
[49] P. Lu, L. Qiu, W. Yu, S. Welleck, and K. Chang, “A survey of deep learning for mathematical reasoning,”CoRR, vol. abs/2212.10535, 2022.
[50] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, L. Li, and Z. Sui, “A survey for in-context learning,” CoRR, vol. abs/2301.00234, 2023.
[51] J. Huang and K. C. Chang, “Towards reasoning in large language models: A survey,” CoRR, vol.
abs/2212.10403, 2022.
[52] S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan, F. Huang, and H. Chen, “Reasoning with language model prompting: A survey,” CoRR, vol.
abs/2212.09597, 2022.
[53] J. Zhou, P. Ke, X. Qiu, M. Huang, and J. Zhang, “Chatgpt: potential, prospects, and limitations,” in Frontiers of Information Technology & Electronic Engineering, 2023, pp. 1–6.
[54] W. X. Zhao, J. Liu, R. Ren, and J. Wen, “Dense text retrieval based on pretrained language models: A survey,” CoRR, vol. abs/2211.14876, 2022.-
[55] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
[56] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C.
Sutton, S.
Gehrmann, P.
Schuh, K.
Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with pathways,” CoRR, vol.
abs/2204.02311, 2022.
[57] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and eficient foundation language models,” CoRR, 2023.
[58] B. A. Huberman and T. Hogg, “Phase transitions in artificial intelligence systems,” Artificial Intelligence, vol. 33, no. 2, pp. 155–171, 1987.
[59] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, H. F. Song, J. Aslanides, S. Henderson, R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick, A. Cassirer, R. Powell, G. van den Driessche, L. A.
Hendricks, M. Rauh, P. Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang, J. Uesato, J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen, S. M.
Jayakumar, E. Buchatskaya, D. Budden, E. Suther-land, K. Simonyan, M. Paganini, L. Sifre, L. Martens, X. L. Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato, A. Lazaridou, A. Mensch, J. Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux, M. Pajarskas, T. Pohlen, Z. Gong, D. Toyama, C. de Masson d’Autume, Y. Li, T. Terzi, V. Mikulik, I. Babuschkin, A. Clark, D. de Las Casas, A. Guy, C. Jones, J. Bradbury, M. J. Johnson, B. A. Hechtman, L. Weidinger, I. Gabriel, W. S. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. Ayoub, J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving, “Scaling language models: Methods, analysis & insights from training gopher,” CoRR, vol.
abs/2112.11446, 2021.-
[60] D. Dai, Y. Sun, L. Dong, Y. Hao, Z. Sui, and F. Wei, “Why can GPT learn in-context? language models secretly perform gradient descent as meta-optimizers,”CoRR, vol. abs/2212.10559, 2022.
[61] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” CoRR, vol.
abs/2203.02155, 2022.
[62] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.
[63] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, Y. Zhou, C. Chang, I. Krivokon, W. Rusch, M. Pickett, K. S.
Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak, E. H. Chi, and Q. Le, “Lamda: Language models for dialog applications,” CoRR, vol. abs/2201.08239, 2022.
[64] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. Dehghani, S. Brahma,A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, S. Narang, G. Mishra, A. Yu, V. Y.
Zhao, Y. Huang, A. M. Dai, H. Yu, S. Petrov, E. H.
Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V.
Le, and J. Wei, “Scaling instruction-finetuned language models,” CoRR, vol. abs/2210.11416, 2022.-
[65] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters,” in KDD, 2020, pp. 3505–3506.
[66] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro, “Megatron-lm: Training multi-billion parameter language models using model parallelism,” CoRR, vol. abs/1909.08053, 2019.
[67] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Zaharia, “Eficient large-scale language model training on GPU clusters using megatron-lm,” in International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St.
Louis, Missouri, USA, November 14-19, 2021.
ACM, 2021, p. 58.
[68] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation in large transformer models,”CoRR, vol. abs/2205.05198, 2022.
[69] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilic, D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon, M. Gallé, J. Tow, A. M. Rush, S. Biderman, A. Webson, P. S.
Ammanamanchi, T. Wang, B. Sagot, N. Muennighoff, A. V. del Moral, O. Ruwase, R. Bawden, S. Bekman, A. McMillan-Major, I. Beltagy, H. Nguyen, L. Saulnier, S. Tan, P. O. Suarez, V. Sanh, H. Laurençon, Y. Jernite, J. Launay, M. Mitchell, C. Raffel, A. Gokaslan, A. Simhi, A. Soroa, A. F. Aji, A. Alfassy, A. Rogers, A. K. Nitzav, C. Xu, C. Mou, C. Emezue, C. Klamm, C. Leong, D. van Strien, D. I. Adelani, and et al., “BLOOM: A 176b-parameter open-access multilingual language model,” CoRR, vol. abs/2211.05100, 2022.
[70] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement learning from human preferences,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.Vishwanathan, and R. Garnett, Eds., 2017, pp. 4299–4307.-
[71] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M.
Lomeli, L.
Zettlemoyer, N.
Cancedda, and T. Scialom, “Toolformer: Language models can teach themselves to use tools,” CoRR, vol. abs/2302.04761, 2023.
[72] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman, “Webgpt: Browser-assisted question-answering with human feedback,” CoRR, vol. abs/2112.09332, 2021.
[73] A. Radford, R. Józefowicz, and I. Sutskever, “Learning to generate reviews and discovering sentiment,” CoRR, vol. abs/1704.01444, 2017.
[74] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
[75] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural language decathlon: Multitask learning as question answering,” CoRR, vol. abs/1806.08730, 2018.
[76] Y. Zhang, S. Sun, M. Galley, Y. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and B. Dolan, “DIALOGPT : Large-scale generative pre-training for conversational response generation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, ACL 2020, Online, July 510, 2020, A. Celikyilmaz and T. Wen, Eds. Association for Computational Linguistics, 2020, pp. 270–278.
[77] D. Ham, J. Lee, Y. Jang, and K. Kim, “End-to-end neural pipeline for goal-oriented dialogue systems using GPT-2,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Association for Computational Linguistics, 2020, pp. 583–592.
[78] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. HerbertVoss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language models trained on code,” CoRR, vol. abs/2107.03374, 2021.-
[79] I. Drori, S. Tran, R. Wang, N. Cheng, K. Liu, L. Tang, E. Ke, N. Singh, T. L. Patti, J. Lynch, A. Shporer, N. Verma, E. Wu, and G. Strang, “A neural network solves and generates mathematics problems by program synthesis: Calculus, differential equations, linear algebra, and more,” CoRR, vol. abs/2112.15594, 2021.
[80] A. Neelakantan, T. Xu, R. Puri, A. Radford, J. M.
Han, J. Tworek, Q. Yuan, N. Tezak, J. W. Kim, C. Hallacy, J. Heidecke, P. Shyam, B. Power, T. E.
Nekoul, G. Sastry, G. Krueger, D. Schnurr, F. P.
Such, K. Hsu, M. Thompson, T. Khan, T. Sherbakov, J. Jang, P. Welinder, and L. Weng, “Text and code embeddings by contrastive pre-training,” CoRR, vol.
abs/2201.10005, 2022.
[81] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”arXiv preprint arXiv:1707.06347, 2017.
[82] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F. Christiano, “Learning to summarize from human feedback,” CoRR, vol. abs/2009.01325, 2020.
[83] OpenAI, “Our approach to alignment research,” OpenAI Blog, August 2022.
[84] ——, “Introducing chatgpt,” OpenAI Blog, November 2022.
[85] D. Ganguli, L. Lovitt, J. Kernion, A. Askell, Y. Bai, S.
Kadavath, B.
Mann, E.
Perez, N.
Schiefer, K. Ndousse, A. Jones, S. Bowman, A. Chen, T. Conerly, N. DasSarma, D. Drain, N. Elhage, S. E. Showk, S. Fort, Z. Hatfield-Dodds, T. Henighan, D. Hernandez, T. Hume, J. Jacobson, S. Johnston, S. Kravec, C. Olsson, S. Ringer, E. Tran-Johnson, D. Amodei, T. Brown, N. Joseph, S. McCandlish, C. Olah, J. Kaplan, and J. Clark, “Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned,” CoRR, vol. abs/2209.07858, 2022.
[86] OpenAI, “Lessons learned on language model safety and misuse,” OpenAI Blog, March 2022.
[87] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., pp. 140:1–140:67, 2020.-
[88] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and C. Raffel, “mt5: A massively multilingual pre-trained text-to-text transformer,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, 2021, pp. 483–498.
[89] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang, Z. Yang, K. Wang, X. Zhang, C. Li, Z. Gong, Y. Yao, X. Huang, J. Wang, J. Yu, Q. Guo, Y. Yu, Y. Zhang, J. Wang, H. Tao, D. Yan, Z. Yi, F. Peng, F. Jiang, H. Zhang, L. Deng, Y. Zhang, Z. Lin, C. Zhang, S. Zhang, M. Guo, S. Gu, G. Fan, Y. Wang, X. Jin, Q. Liu, and Y. Tian, “Pangu-α: Large-scale autoregressive pretrained chinese language models with auto-parallel computation,” CoRR, vol.
abs/2104.12369, 2021.
[90] Z. Zhang, Y. Gu, X. Han, S. Chen, C. Xiao, Z. Sun, Y. Yao, F. Qi, J. Guan, P. Ke, Y. Cai, G. Zeng, Z. Tan, Z. Liu, M. Huang, W. Han, Y. Liu, X. Zhu, and M. Sun, “CPM-2: large-scale cost-effective pre-trained language models,” CoRR, vol. abs/2106.10715, 2021.
[91] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open large language model for code with mtulti-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.
[92] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy, K. McDonell, J. Phang, M. Pieler, U. S. Prashanth, S. Purohit, L. Reynolds, J. Tow, B. Wang, and S. Weinbach, “Gpt-neox-20b: An open-source autoregressive language model,” CoRR, vol. abs/2204.06745, 2022.
[93] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Naik, A. Ashok, A. S. Dhanasekaran, A. Arunkumar, D. Stap, E. Pathak, G. Karamanolakis, H. G. Lai, I. Purohit, I. Mondal, J. Anderson, K. Kuznia, K. Doshi, K. K. Pal, M. Patel, M. Moradshahi, M. Parmar, M. Purohit, N. Varshney, P. R. Kaza, P. Verma, R. S. Puri, R. Karia, S. Doshi, S. K. Sampat, S. Mishra, S. R. A, S. Patro, T. Dixit, and X. Shen, “Super-naturalinstructions: Generalization via declarative instructions on 1600+ NLP tasks,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, 2022, pp. 5085–5109.
[94] Y. Tay, M. Dehghani, V. Q. Tran, X. García, J. Wei,X. Wang, H. W. Chung, D. Bahri, T. Schuster, H. Zheng, D. Zhou, N. Houlsby, and D. Metzler, “Ul2: Unifying language learning paradigms,” 2022.-
[95] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. T. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “OPT: open pre-trained transformer language models,”CoRR, vol. abs/2205.01068, 2022.
[96] M. R. Costa-jussà, J. Cross, O. Çelebi, M. Elbayad, K. Heafield, K. Heffernan, E. Kalbassi, J. Lam, D. Licht, J. Maillard, A. Sun, S. Wang, G. Wenzek, A. Youngblood, B. Akula, L. Barrault, G. M. Gonzalez, P. Hansanti, J. Hoffman, S. Jarrett, K. R. Sadagopan, D. Rowe, S. Spruit, C. Tran, P. Andrews, N. F. Ayan, S. Bhosale, S. Edunov, A. Fan, C. Gao, V. Goswami, F. Guzmán, P. Koehn, A. Mourachko, C. Ropers, S. Saleem, H. Schwenk, and J. Wang, “No language left behind: Scaling human-centered machine translation,”CoRR, vol. abs/2207.04672, 2022.
[97] A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia, W. L. Tam, Z. Ma, Y. Xue, J. Zhai, W. Chen, P. Zhang, Y. Dong, and J. Tang, “GLM-130B: an open bilingual pre-trained model,” vol. abs/2210.02414, 2022.
[98] N. Muennighoff, T. Wang, L. Sutawika, A. Roberts, S. Biderman, T. L. Scao, M. S. Bari, S. Shen, Z. X. Yong, H. Schoelkopf, X. Tang, D. Radev, A. F. Aji, K. Almubarak, S. Albanie, Z. Alyafeai, A. Webson, E. Raff, and C. Raffel, “Crosslingual generalization through multitask finetuning,” CoRR, vol. abs/2211.01786, 2022.
[99] S. Iyer, X. V. Lin, R. Pasunuru, T. Mihaylov, D. Simig, P. Yu, K. Shuster, T. Wang, Q. Liu, P. S. Koura, X. Li, B. O’Horo, G. Pereyra, J. Wang, C. Dewan, A. Celikyilmaz, L. Zettlemoyer, and V. Stoyanov, “OPT-IML: scaling language model instruction meta learning through the lens of generalization,” CoRR, vol. abs/2212.12017, 2022.
[100] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, Z. Wang, L. Shen, A. Wang, Y. Li et al., “Codegeex: A pre-trained model for code generation with multilingual evaluations on humaneval-x,” arXiv preprint arXiv:2303.17568, 2023.
[101] S. Biderman, H. Schoelkopf, Q. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan, S. Purohit, U. S.
Prashanth, E. Raff et al., “Pythia: A suite for analyz-ing large language models across training and scaling,”arXiv preprint arXiv:2304.01373, 2023.-
[102] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional computation and automatic sharding,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.
[103] Y. Sun, S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu, W. Liu, Z. Wu, W. Gong, J. Liang, Z. Shang, P. Sun, W. Liu, X. Ouyang, D. Yu, H. Tian, H. Wu, and H. Wang, “ERNIE 3.0: Large-scale knowledge enhanced pretraining for language understanding and generation,”CoRR, vol. abs/2107.02137, 2021.
[104] O. Lieber, O. Sharir, B. Lenz, and Y. Shoham, “Jurassic-1: Technical details and evaluation,” White Paper. AI21 Labs, vol. 1, 2021.
[105] B. Kim, H. Kim, S. Lee, G. Lee, D. Kwak, D. H. Jeon, S. Park, S. Kim, S. Kim, D. Seo, H. Lee, M. Jeong, S. Lee, M. Kim, S. Ko, S. Kim, T. Park, J. Kim, S. Kang, N. Ryu, K. M. Yoo, M. Chang, S. Suh, S. In, J. Park, K. Kim, H. Kim, J. Jeong, Y. G. Yeo, D. Ham, D. Park, M. Y. Lee, J. Kang, I. Kang, J. Ha, W. Park, and N. Sung, “What changes can large-scale language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained transformers,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 711 November, 2021.
Association for Computational Linguistics, 2021.
[106] S. Wu, X. Zhao, T. Yu, R. Zhang, C. Shen, H. Liu, F. Li, H. Zhu, J. Luo, L. Xu et al., “Yuan 1.0: Large-scale pre-trained language model in zero-shot and few-shot learning,” arXiv preprint arXiv:2110.04725, 2021.
[107] A. Askell, Y. Bai, A. Chen, D. Drain, D. Ganguli, T. Henighan, A. Jones, N. Joseph, B. Mann, N. DasSarma, N. Elhage, Z. Hatfield-Dodds, D. Hernandez, J. Kernion, K. Ndousse, C. Olsson, D. Amodei, T. B.
Brown, J. Clark, S. McCandlish, C. Olah, and J. Kaplan, “A general language assistant as a laboratory for alignment,” CoRR, vol. abs/2112.00861, 2021.
[108] S. Wang, Y. Sun, Y. Xiang, Z. Wu, S. Ding, W. Gong, S. Feng, J. Shang, Y. Zhao, C. Pang, J. Liu, X. Chen, Y. Lu, W. Liu, X. Wang, Y. Bai, Q. Chen, L. Zhao, S. Li, P. Sun, D. Yu, Y. Ma, H. Tian, H. Wu, T. Wu,W. Zeng, G. Li, W. Gao, and H. Wang, “ERNIE 3.0 titan: Exploring larger-scale knowledge enhanced pretraining for language understanding and generation,”CoRR, vol. abs/2112.12731, 2021.-
[109] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat, B. Zoph, L. Fedus, M. P. Bosma, Z. Zhou, T. Wang, Y. E. Wang, K. Webster, M. Pellat, K. Robinson, K. S.
Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and C. Cui, “Glam: Eficient scaling of language models with mixture-of-experts,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, 2022, pp.
5547–5569.
[110] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zheng, R. Child, R. Y. Aminabadi, J. Bernauer, X. Song, M. Shoeybi, Y. He, M. Houston, S. Tiwary, and B. Catanzaro, “Using deepspeed and megatron to train megatron-turing NLG 530b, A large-scale generative language model,” CoRR, vol.
abs/2201.11990, 2022.
[111] Y. Li, D. H. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy, C. de Masson d’Autume, I. Babuschkin, X. Chen, P. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J.
Mankowitz, E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals, “Competition-level code generation with alphacode,” Science, 2022.
[112] S. Soltan, S. Ananthakrishnan, J. FitzGerald, R. Gupta, W. Hamza, H. Khan, C. Peris, S. Rawls, A. Rosenbaum, A. Rumshisky, C. S. Prakash, M. Sridhar, F. Triefenbach, A. Verma, G. Tür, and P. Natarajan, “Alexatm 20b: Few-shot learning using a large-scale multilingual seq2seq model,” CoRR, vol. abs/2208.01448, 2022.
[113] A. Glaese, N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger, M. Chadwick, P. Thacker, L. Campbell-Gillingham, J. Uesato, P. Huang, R. Comanescu, F. Yang, A. See, S. Dathathri, R. Greig, C. Chen, D. Fritz, J. S. Elias, R. Green, S. Mokrá, N. Fernando, B. Wu, R. Foley, S. Young, I. Gabriel, W. Isaac, J. Mellor, D. Hassabis, K. Kavukcuoglu, L. A. Hendricks, and G. Irving, “Improving alignment of dialogue agents via targeted human judgements,” CoRR, vol. abs/2209.14375, 2022.
[114] H. Su, X. Zhou, H. Yu, Y. Chen, Z. Zhu, Y. Yu,and J. Zhou, “Welm: A well-read pre-trained language model for chinese,” CoRR, vol. abs/2209.10372, 2022.-
[115] Y. Tay, J. Wei, H. W. Chung, V. Q. Tran, D. R. So, S. Shakeri, X. Garcia, H. S. Zheng, J. Rao, A. Chowdhery, D. Zhou, D. Metzler, S. Petrov, N. Houlsby, Q. V.
Le, and M. Dehghani, “Transcending scaling laws with 0.1% extra compute,” CoRR, vol. abs/2210.11399, 2022.
[116] X. Ren, P. Zhou, X. Meng, X. Huang, Y. Wang, W. Wang, P. Li, X. Zhang, A. Podolskiy, G. Arshinov, A. Bout, I. Piontkovskaya, J. Wei, X. Jiang, T. Su, Q. Liu, and J. Yao, “Pangu-Σ: Towards trillion parameter language model with sparse heterogeneous computing,” CoRR, vol. abs/2303.10845, 2023.
[117] L. Huawei Technologies Co., “Huawei mindspore ai development framework,” in Artificial Intelligence Technology.
Springer, 2022, pp. 137–162.
[118] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama model,”https://github.com/tatsu-lab/stanford_alpaca, 2023.
[119] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,”2023. [Online]. Available: https://vicuna.lmsys.org [120] 2023. [Online]. Available: https://github.com/nebulyai/nebullvm/tree/main/apps/accelerate/chatllama [121] Y.
You, “Colossalchat: An open-source solution for cloning chatgpt with a complete rlhf pipeline,”2023.
[Online].
Available: https://medium.com/@yangyou_berkeley/ colossalchat-an-open-source-solution-for-cloningchatgpt-with-a-complete-rlhf-pipeline-5edf08fb538b [122] Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler, “Aligning books and movies: Towards story-like visual explanations by watching movies and reading books,” in 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015.
IEEE Computer Society, 2015, pp. 19–27.
[123] “Project gutenberg.” [Online]. Available: https://www.
gutenberg.org/
[124] T. H. Trinh and Q. V. Le, “A simple method for commonsense reasoning,” CoRR, vol. abs/1806.02847, 2018.
[125] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi, “Defending
against neural fake news,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 9051–9062.-
[126] A. Gokaslan, V. C. E. Pavlick, and S. Tellex, “Openwebtext corpus,” http://Skylion007.github.io/ OpenWebTextCorpus, 2019.
[127] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Blackburn, “The pushshift reddit dataset,” in Proceedings of the Fourteenth International AAAI Conference on Web and Social Media, ICWSM 2020, Held Virtually, Original Venue: Atlanta, Georgia, USA, June 8-11, 2020.
AAAI Press, 2020, pp. 830–839.
[128] “Wikipedia.” [Online]. Available: https://en.wikipedia.
org/wiki/Main_Page [129] “Bigquery dataset.” [Online]. Available: https://cloud.
google.com/bigquery?hl=zh-cn [130] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy, “The pile: An 800gb dataset of diverse text for language modeling,” CoRR, vol.
abs/2101.00027, 2021.
[131] H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. V. del Moral, T. Le Scao, L. Von Werra, C. Mou, E. G. Ponferrada, H. Nguyen et al., “The bigscience roots corpus: A 1.6 tb composite multilingual dataset,” in Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.
[132] “Common crawl.”[Online].
Available: https: //commoncrawl.org/ [133] “A reproduction version of cc-stories on hugging face.”[Online]. Available: https://huggingface.co/datasets/ spacemanidol/cc-stories [134] B. Wang and A. Komatsuzaki, “GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model,” https:// github.com/kingoflolz/mesh-transformer-jax, 2021.
[135] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-ofthe-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP2020 - Demos, Online, November 16-20, 2020.
Association for Computational Linguistics, 2020, pp. 38–45.-
[136] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018. [Online]. Available: http://github.
com/google/jax [137] Z. Bian, H. Liu, B. Wang, H. Huang, Y. Li, C. Wang, F. Cui, and Y. You, “Colossal-ai: A unified deep learning system for large-scale parallel training,” CoRR, vol.
abs/2110.14883, 2021.
[138] J. Fang, Y. Yu, S. Li, Y. You, and J. Zhou, “Patrickstar: Parallel training of pre-trained models via a chunk-based memory management,” CoRR, vol.
abs/2108.05818, 2021.
[139] “Bmtrain: Efient training for big models.” [Online].
Available: https://github.com/OpenBMB/BMTrain [140] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A fast mixture-of-expert training system,”CoRR, vol. abs/2103.13262, 2021.
[141] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 8024–8035.
[142] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, K. Keeton and T. Roscoe, Eds.
USENIX Association, 2016, pp. 265–283.
[143] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and eficient machine learning library for heterogeneous distributed systems,” CoRR, vol. abs/1512.01274,2015.-
[144] Y. Ma, D. Yu, T. Wu, and H. Wang, “Paddlepaddle: An open-source deep learning platform from industrial practice,” Frontiers of Data and Domputing, vol. 1, no. 1, p. 105, 2019.
[145] J. Yuan, X. Li, C. Cheng, J. Liu, R. Guo, S. Cai, C. Yao, F. Yang, X. Yi, C. Wu, H. Zhang, and J. Zhao, “Oneflow: Redesign the distributed deep learning framework from scratch,” CoRR, vol. abs/2110.15032, 2021.
[146] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, E. M. Smith, Y. Boureau, and J. Weston, “Recipes for building an open-domain chatbot,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, 2021, pp. 300–325.
[147] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. V. Ramasesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo, Y. Wu, B. Neyshabur, G. Gur-Ari, and V. Misra, “Solving quantitative reasoning problems with language models,” CoRR, vol.
abs/2206.14858, 2022.
[148] T. Saier, J. Krause, and M. Färber, “unarxive 2022: All arxiv publications pre-processed for nlp, including structured full-text and citation network,” arXiv preprint arXiv:2303.14957, 2023.
[149] H. A. Simon, “Experiments with a heuristic compiler,”J. ACM, vol. 10, no. 4, pp. 493–506, 1963.
[150] Z. Manna and R. J. Waldinger, “Toward automatic program synthesis,” Commun. ACM, vol. 14, no. 3, pp.
151–165, 1971.
[151] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for programming and natural languages,” in Findings of EMNLP, 2020.
[152] J.
Austin, A.
Odena, M.
I.
Nye, M.
Bosma, H. Michalewski, D. Dohan, E. Jiang, C. J. Cai, M. Terry, Q. V. Le, and C. Sutton, “Program synthesis with large language models,” CoRR, vol. abs/2108.07732, 2021.
[153] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman, “GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow,” 2021.
[154] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of large language models of code,” in MAPS@PLDI, 2022.
[155] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W. Yih, L. Zettlemoyer, and M. Lewis,“Incoder: A generative model for code infilling and synthesis,” in ICLR, 2023.-
[156] A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig, “Language models of code are few-shot commonsense learners,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.
Association for Computational Linguistics, 2022, pp. 1384–1403.
[157] Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and C. Szegedy, “Autoformalization with large language models,” CoRR, vol. abs/2205.12615, 2022.
[158] D. Hernandez, T. B. Brown, T. Conerly, N. DasSarma, D. Drain, S. E. Showk, N. Elhage, Z. Hatfield-Dodds, T. Henighan, T. Hume, S. Johnston, B. Mann, C. Olah, C. Olsson, D. Amodei, N. Joseph, J. Kaplan, and S. McCandlish, “Scaling laws and interpretability of learning from repeated data,” CoRR, vol. abs/2205.10487, 2022.
[159] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.
[160] K. Lee, D. Ippolito, A. Nystrom, C. Zhang, D. Eck, C. Callison-Burch, and N. Carlini, “Deduplicating training data makes language models better,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, 2022, pp. 8424–8445.
[161] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramèr, and C. Zhang, “Quantifying memorization across neural language models,” CoRR, 2022.
[162] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown, D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel, “Extracting training data from large language models,” in 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, 2021, pp. 2633–2650.
[163] N. Kandpal, E. Wallace, and C. Raffel, “Deduplicating training data mitigates privacy risks in language models,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA.
PMLR, 2022, pp. 10 697–10 707.
[164] T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, E. Blanco and W. Lu, Eds.
Association for Computational Linguistics, 2018.-
[165] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with subword units,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.
The Association for Computer Linguistics, 2016.
[166] M. Davis and M. Dürst, “Unicode normalization forms,”2001.
[167] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni, G. Boleda, and R. Fernández, “The LAMBADA dataset: Word prediction requiring a broad discourse context,” in ACL (1).
The Association for Computer Linguistics, 2016.
[168] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double descent: Where bigger models and more data hurt,” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.
[169] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H. Hon, “Unified language model pre-training for natural language understanding and generation,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019, pp. 13 042–13 054.
[170] A. Clark, D. de Las Casas, A. Guy, A. Mensch, M. Paganini, J. Hoffmann, B. Damoc, B. A. Hechtman, T. Cai, S. Borgeaud, G. van den Driessche, E. Rutherford, T. Hennigan, M. J. Johnson, A. Cassirer, C. Jones, E. Buchatskaya, D. Budden, L. Sifre, S. Osindero, O. Vinyals, M. Ranzato, J. W. Rae, E. Elsen, K. Kavukcuoglu, and K. Simonyan, “Unified scaling laws for routed language models,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, 2022, pp. 4057–4086.
[171] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou, Z. Shao, H. Yang, and J. Tang, “Cogview: Mastering text-to-image generation via transformers,”in Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp. 19 822–19 835.-
[172] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” vol. abs/1607.06450, 2016.
[173] B. Zhang and R. Sennrich, “Root mean square layer normalization,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019, pp.
12 360–12 371.
[174] H. Wang, S. Ma, L. Dong, S. Huang, D. Zhang, and F. Wei, “Deepnet: Scaling transformers to 1, 000 layers,”vol. abs/2203.00555, 2022.
[175] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp. 807–814.
[176] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “GLUE: A multi-task benchmark and analysis platform for natural language understanding,” in Proceedings of the Workshop: Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium, November 1, 2018, T. Linzen, G. Chrupala, and A. Alishahi, Eds.
Association for Computational Linguistics, 2018, pp.
353–355.
[177] P.
Ramachandran, B.
Zoph, and Q.
V.
Le, “Searching for activation functions,” arXiv preprint arXiv:1710.05941, 2017.
[178] N. Shazeer, “GLU variants improve transformer,” vol.
abs/2002.05202, 2020.
[179] J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu, “Roformer: Enhanced transformer with rotary position embedding,” vol. abs/2104.09864, 2021.
[180] O. Press, N. A. Smith, and M. Lewis, “Train short, test long: Attention with linear biases enables input length extrapolation,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.
[181] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T. Liu, “On layer normalization in the transformer architecture,” in ICML, 2020.
[182] T. L. Scao, T. Wang, D. Hesslow, S. Bekman, M. S. Bari, S. Biderman, H. Elsahar, N. Muennighoff, J. Phang,O. Press, C. Raffel, V. Sanh, S. Shen, L. Sutawika, J. Tae, Z. X. Yong, J. Launay, and I. Beltagy, “What language model to train if you have one million GPU hours?” in Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, 2022, pp. 765–782.-
[183] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint arXiv:1606.08415, 2016.
[184] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling with gated convolutional networks,” in Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 933–941.
[185] S. Narang, H. W. Chung, Y. Tay, L. Fedus, T. Févry, M. Matena, K. Malkan, N. Fiedel, N. Shazeer, Z. Lan, Y. Zhou, W. Li, N. Ding, J. Marcus, A. Roberts, and C. Raffel, “Do transformer modifications transfer across implementations and applications?” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, 2021, pp. 5758–5773.
[186] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse transformers,” CoRR, vol. abs/1904.10509, 2019.
[187] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. A.
Smith, and L. Kong, “Random feature attention,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
[188] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontañón, P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big bird: Transformers for longer sequences,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
[189] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Re, “Flashattention: Fast and memory-eficient exact attention with IO-awareness,” in NeurIPS, 2022.
[190] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
[191] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,” CoRR, vol. abs/1711.05101, 2017.
[192] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates with sublinear memory cost,” in Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research, J. G. Dy and A. Krause, Eds., vol. 80.
PMLR, 2018, pp. 4603–4611.-
[193] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. X. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “Gpipe: Eficient training of giant neural networks using pipeline parallelism,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 103–112.
[194] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, and P. B. Gibbons, “Pipedream: Fast and eficient pipeline parallel DNN training,” CoRR, vol. abs/1806.03377, 2018.
[195] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: memory optimizations toward training trillion parameter models,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, C. Cuicchi, I. Qualters, and W. T. Kramer, Eds.
IEEE/ACM, 2020, p. 20.
[196] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. García, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed precision training,” CoRR, vol. abs/1710.03740, 2017.
[197] Q. Xu, S. Li, C. Gong, and Y. You, “An eficient 2d method for training super-large deep learning models,”CoRR, vol. abs/2104.05343, 2021.
[198] B. Wang, Q. Xu, Z. Bian, and Y. You, “Tesseract: Parallelize the tensor parallelism eficiently,” in Proceedings of the 51st International Conference on Parallel Processing, ICPP 2022, Bordeaux, France, 29 August 2022 - 1 September 2022.
ACM, 2022.
[199] Z. Bian, Q. Xu, B. Wang, and Y. You, “Maximizing parallelism in distributed training for huge neural networks,” CoRR, vol. abs/2105.14450, 2021.
[200] S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence parallelism: Long sequence training from system perspective,” arXiv e-prints, pp. arXiv–2105, 2021.
[201] FairScale authors, “Fairscale: A general purpose mod-ular pytorch library for high performance and large scale training,” https://github.com/facebookresearch/ fairscale, 2021.-
[202] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang, Y. Xu, D. Zhuo, E. P. Xing et al., “Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep learning,” in OSDI, 2022, pp.
559–578.
[203] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with sublinear memory cost,” CoRR, vol.
abs/1604.06174, 2016.
[204] Z. Yao, C. Li, X. Wu, S. Youn, and Y. He, “A comprehensive study on post-training quantization for large language models,” CoRR, vol. abs/2303.08302, 2023.
[205] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Llm.int8(): 8-bit matrix multiplication for transformers at scale,” CoRR, vol. abs/2208.07339, 2022.
[206] C. Tao, L. Hou, W. Zhang, L. Shang, X. Jiang, Q. Liu, P. Luo, and N. Wong, “Compression of generative pretrained language models via quantization,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.
Association for Computational Linguistics, 2022, pp. 4821–4836.
[207] S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi, “Cross-task generalization via natural language crowdsourcing instructions,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds., 2022, pp. 3470–3487.
[208] Q. Ye, B. Y. Lin, and X. Ren, “Crossfit: A few-shot learning challenge for cross-task generalization in NLP,”in EMNLP (1).
Association for Computational Linguistics, 2021, pp. 7163–7189.
[209] S. H. Bach, V. Sanh, Z. X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S. Bari, T. Févry, Z. Alyafeai, M. Dey, A. Santilli, Z. Sun, S. Ben-David, C. Xu, G. Chhablani, H. Wang, J. A. Fries, M. S.
AlShaibani, S. Sharma, U. Thakker, K. Almubarak, X. Tang, D. R. Radev, M. T. Jiang, and A. M. Rush, “Promptsource: An integrated development environment and repository for natural language prompts,” in ACL (demo).
Association for Computational Linguistics, 2022, pp. 93–104.
[210] V. Aribandi, Y. Tay, T. Schuster, J. Rao, H. S. Zheng,S. V. Mehta, H. Zhuang, V. Q. Tran, D. Bahri, J. Ni, J. P. Gupta, K. Hui, S. Ruder, and D. Metzler, “Ext5: Towards extreme multi-task scaling for transfer learning,” in ICLR.
OpenReview.net, 2022.[211] T. Xie, C. H. Wu, P. Shi, R. Zhong, T. Scholak, M. Yasunaga, C. Wu, M. Zhong, P. Yin, S. I. Wang, V. Zhong, B. Wang, C. Li, C. Boyle, A. Ni, Z. Yao, D. Radev, C. Xiong, L. Kong, R. Zhang, N. A. Smith, L. Zettlemoyer, and T. Yu, “Unifiedskg: Unifying and multitasking structured knowledge grounding with text-totext language models,” in EMNLP.
Association for Computational Linguistics, 2022, pp. 602–631.
[212] T. Tang, J. Li, W. X. Zhao, and J. Wen, “MVP: multi-task supervised pre-training for natural language generation,” CoRR, vol. abs/2206.12131, 2022.
[213] R. Lou, K. Zhang, and W. Yin, “Is prompt all you need? no. A comprehensive and broader view of instruction learning,” CoRR, vol. abs/2303.10475, 2023.
[214] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks for natural language understanding,” in ACL (1).
Association for Computational Linguistics, 2019, pp. 4487–4496.
[215] A. Aghajanyan, A. Gupta, A. Shrivastava, X. Chen, L. Zettlemoyer, and S. Gupta, “Muppet: Massive multitask representations with pre-finetuning,” in EMNLP (1).
Association for Computational Linguistics, 2021, pp. 5799–5811.
[216] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph, J. Wei, and A. Roberts, “The flan collection: Designing data and methods for effective instruction tuning,” CoRR, vol.
abs/2301.13688, 2023.
[217] Y. Gu, P. Ke, X. Zhu, and M. Huang, “Learning instructions with unlabeled data for zero-shot cross-task generalization,” in EMNLP. Association for Computational Linguistics, 2022, pp. 1617–1634.
[218] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi, “Self-instruct: Aligning language model with self generated instructions,”CoRR, vol. abs/2212.10560, 2022.
[219] O. Honovich, T. Scialom, O. Levy, and T. Schick, “Unnatural instructions: Tuning language models with (almost) no human labor,” CoRR, vol. abs/2212.09689, 2022.
[220] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama model,”https://github.com/tatsu-lab/stanford_alpaca, 2023.
[221] Z. Kenton, T. Everitt, L. Weidinger, I. Gabriel, V. Mikulik, and G. Irving, “Alignment of language agents,” CoRR, vol. abs/2103.14659, 2021.
[222] A. Askell, Y. Bai, A. Chen, D. Drain, D. Ganguli, T. Henighan, A. Jones, N. Joseph, B. Mann, N. DasSarma, N. Elhage, Z. Hatfield-Dodds, D. Hernandez, J. Kernion, K. Ndousse, C. Olsson, D. Amodei, T. B.
Brown, J. Clark, S. McCandlish, C. Olah, and J. Kaplan, “A general language assistant as a laboratory for alignment,” CoRR, vol. abs/2112.00861, 2021.
[223] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N.
DasSarma, D.
Drain, S.
Fort, D.
Ganguli, T. Henighan, N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. E. Showk, N. Elhage, Z. HatfieldDodds, D. Hernandez, T. Hume, S. Johnston, S. Kravec, L. Lovitt, N. Nanda, C. Olsson, D. Amodei, T. B.
Brown, J. Clark, S. McCandlish, C. Olah, B. Mann, and J. Kaplan, “Training a helpful and harmless assistant with reinforcement learning from human feedback,”CoRR, vol. abs/2204.05862, 2022.
[224] E. Perez, S. Huang, H. F. Song, T. Cai, R. Ring, J. Aslanides, A. Glaese, N. McAleese, and G. Irving, “Red teaming language models with language models,”in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.
Association for Computational Linguistics, 2022, pp. 3419–3448.
[225] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. F. Christiano, and G. Irving, “Fine-tuning language models from human preferences,” CoRR, vol. abs/1909.08593, 2019.
[226] J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, H. F.
Song, M. Chadwick, M. Glaese, S. Young, L. CampbellGillingham, G. Irving, and N. McAleese, “Teaching language models to support answers with verified quotes,”CoRR, vol. abs/2203.11147, 2022.
[227] J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, and P. F. Christiano, “Recursively summarizing books with human feedback,” CoRR, vol.
abs/2109.10862, 2021.
[228] N. Ding, Y. Qin, G. Yang, F. Wei, Y. Zonghan, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen, J. Yi, W. Zhao, X. Wang, Z. Liu, H.-T. Zheng, J. Chen, Y. Liu, J. Tang, J. Li, and M. Sun, “Parameter-eficient fine-tuning of large-scale pre-trained language models,” Nature Machine Intelligence, vol. 5, pp. 1–16, 03 2023.
[229] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.
Association for Computational Linguistics, 2021, pp.
4582–4597.
[230] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-eficient prompt tuning,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W.
Yih, Eds.
Association for Computational Linguistics, 2021, pp. 3045–3059.
[231] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.
[232] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-eficient transfer learning for NLP,” in Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, 2019, pp. 2790–2799.
[233] Z. Hu, Y. Lan, L. Wang, W. Xu, E. Lim, R. K. Lee, L. Bing, and S. Poria, “Llm-adapters: An adapter family for parameter-eficient fine-tuning of large language models,” CoRR, vol. abs/2304.01933, 2023.
[234] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a unified view of parametereficient transfer learning,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.
[235] X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang, “Ptuning v2: Prompt tuning can be comparable to finetuning universally across scales and tasks,” CoRR, vol.
abs/2110.07602, 2021.
[236] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, “GPT understands, too,” CoRR, vol.abs/2103.10385, 2021.
[237] Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning for few-shot learning,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp.
8410–8423.
[238] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know what language models know?” Transactions of the Association for Computational Linguistics, vol. 8, pp. 423–438, 2020.
[239] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh, “Autoprompt: Eliciting knowledge from language models with automatically generated prompts,”in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 4222–4235.
[240] Q.
Zhang, M.
Chen, A.
Bukharin, P.
He, Y.
Cheng, W.
Chen, and T.
Zhao, “Adaptive budget allocation for parameter-eficient fine-tuning,”CoRR, vol. abs/2303.10512, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.10512 [241] M. Valipour, M. Rezagholizadeh, I. Kobyzev, and A. Ghodsi, “Dylora: Parameter eficient tuning of pre-trained models using dynamic search-free lowrank adaptation,” CoRR, vol. abs/2210.07558, 2022.
[Online].
Available: https://doi.org/10.48550/arXiv.
2210.07558 [242] Alpaca-LoRA, “Instruct-tune llama on consumer hardware,” https://github.com/tloen/alpaca-lora, 2023.
[243] R. Zhang, J. Han, A. Zhou, X. Hu, S. Yan, P. Lu, H. Li, P. Gao, and Y. Qiao, “Llama-adapter: Eficient fine-tuning of language models with zero-init attention,”CoRR, vol. abs/2303.16199, 2023.
[244] J. Pfeiffer, I. Vulic, I. Gurevych, and S. Ruder, “MADX: an adapter-based framework for multi-task crosslingual transfer,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.
Association for Computational Linguistics, 2020, pp. 7654–7673.
[245] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, and S. Paul, “Peft: State-of-the-art parameter-eficient finetuning methods,”https://github.com/huggingface/ peft, 2022.
[246] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer, “Rethinking the role of demonstrations: What makes in-context learning work?” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022. Association for Computational Linguistics, 2022, pp. 11 048–11 064.
[247] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, “Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity,”in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds., 2022, pp. 8086–8098.
[248] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate before use: Improving few-shot performance of language models,” in Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, M. Meila and T. Zhang, Eds., 2021, pp. 12 697–12 706.
[249] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes good in-context examples for gpt-3?” in Proceedings of Deep Learning Inside Out: The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, DeeLIO@ACL 2022, Dublin, Ireland and Online, May 27, 2022, 2022, pp.
100–114.
[250] Y. Lee, C. Lim, and H. Choi, “Does GPT-3 generate empathetic dialogues? A novel in-context example selection method and automatic evaluation metric for empathetic dialogue generation,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds.
International Committee on Computational Linguistics, 2022, pp. 669–683.
[251] I. Levy, B. Bogin, and J. Berant, “Diverse demonstrations improve in-context compositional generalization,”CoRR, vol. abs/2212.06800, 2022.
[252] H. Su, J. Kasai, C. H. Wu, W. Shi, T. Wang, J. Xin, R. Zhang, M. Ostendorf, L. Zettlemoyer, N. A. Smith, and T. Yu, “Selective annotation makes language models better few-shot learners,” CoRR, 2022.
[253] X. Ye, S. Iyer, A. Celikyilmaz, V. Stoyanov, G. Durrett, and R. Pasunuru, “Complementary explanations for effective in-context learning,” CoRR, 2022.
[254] X. Li and X. Qiu, “Finding supporting examples for incontext learning,” CoRR, 2023.
[255] O. Rubin, J. Herzig, and J. Berant, “Learning to retrieve prompts for in-context learning,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, 2022, pp. 2655–2671.
[256] Y. Zhang, S. Feng, and C. Tan, “Active example selection for in-context learning,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, 2022, pp. 9134–9148.
[257] F. Gilardi, M. Alizadeh, and M. Kubli, “Chatgpt outperforms crowd-workers for text-annotation tasks,”2023.
[258] H. J. Kim, H. Cho, J. Kim, T. Kim, K. M. Yoo, and S. Lee, “Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator,” CoRR, vol. abs/2206.08082, 2022.
[259] Y. Lin, A. Papangelis, S. Kim, S. Lee, D. Hazarika, M. Namazifar, D. Jin, Y. Liu, and D. Hakkani-Tur, “Selective in-context data augmentation for intent detection using pointwise v-information,” CoRR, 2023.
[260] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, “An explanation of in-context learning as implicit bayesian inference,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.
[261] Z. Zhang, A. Zhang, M. Li, and A. Smola, “Automatic chain of thought prompting in large language models,”CoRR, vol. abs/2210.03493, 2022.
[262] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, Q. Le, and E. H. Chi, “Least-to-most prompting enables complex reasoning in large language models,” CoRR, vol. abs/2205.10625, 2022.
[263] Z. Wu, Y. Wang, J. Ye, and L. Kong, “Self-adaptive incontext learning,” CoRR, vol. abs/2212.10375, 2022.
[264] S. Min, M. Lewis, L. Zettlemoyer, and H. Hajishirzi, “Metaicl: Learning to learn in context,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds., 2022, pp. 2791–2809.
[265] S. C. Y. Chan, A. Santoro, A. K. Lampinen, J. X.
Wang, A. Singh, P. H. Richemond, J. McClelland, and F. Hill, “Data distributional properties drive emergent in-context learning in transformers,” CoRR, vol.
abs/2205.05055, 2022.
[266] S. Shin, S. Lee, H. Ahn, S. Kim, H. Kim, B. Kim, K. Cho, G. Lee, W. Park, J. Ha, and N. Sung, “On the effect of pretraining corpora on in-context learning by a large-scale language model,” in NAACL-HLT.
Association for Computational Linguistics, 2022, pp. 5168–5186.
[267] J. von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and M. Vladymyrov, “Transformers learn in-context by gradient descent,” CoRR, vol. abs/2212.07677, 2022.
[268] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah, “In-context learning and induction heads,”CoRR, vol. abs/2209.11895, 2022.
[269] H. Bansal, K. Gopalakrishnan, S. Dingliwal, S. Bodapati, K. Kirchhoff, and D. Roth, “Rethinking the role of scale for in-context learning: An interpretabilitybased case study at 66 billion scale,” CoRR, vol.
abs/2212.09095, 2022.
[270] Y. Li, M. E. Ildiz, D. S. Papailiopoulos, and S. Oymak, “Transformers as algorithms: Generalization and implicit model selection in in-context learning,” CoRR, vol. abs/2301.07067, 2023.
[271] E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou, “What learning algorithm is in-context learning? investigations with linear models,” CoRR, vol.
abs/2211.15661, 2022.
[272] S. Garg, D. Tsipras, P. Liang, and G. Valiant, “What can transformers learn in-context? A case study of simple function classes,” CoRR, vol. abs/2208.01066, 2022.
[273] K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman, “Training verifiers to solve math word problems,” CoRR, vol.
abs/2110.14168, 2021.
[274] A. Patel, S. Bhattamishra, and N. Goyal, “Are NLP models really able to solve simple math word problems?” in NAACL-HLT.
Association for Computa-tional Linguistics, 2021, pp. 2080–2094.
[275] S. Miao, C. Liang, and K. Su, “A diverse corpus for evaluating and developing english math word problem solvers,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds.
Association for Computational Linguistics, 2020, pp. 975–984.
[276] A. Talmor, J. Herzig, N. Lourie, and J. Berant, “Commonsenseqa: A question answering challenge targeting commonsense knowledge,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.
Association for Computational Linguistics, 2019, pp.
4149–4158.
[277] M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant, “Did aristotle use a laptop? A question answering benchmark with implicit reasoning strategies,”Trans. Assoc. Comput. Linguistics, vol. 9, pp. 346–361, 2021.
[278] Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J. Lou, and W. Chen, “On the advance of making language models better reasoners,” CoRR, vol. abs/2206.02336, 2022.
[279] Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot, “Complexity-based prompting for multi-step reasoning,” CoRR, vol. abs/2210.00720, 2022.
[280] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot reasoners,”CoRR, vol. abs/2205.11916, 2022.
[281] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H.
Chi, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” CoRR, vol.
abs/2203.11171, 2022.
[282] ——, “Rationale-augmented ensembles in language models,” CoRR, 2022.
[283] S. Imani, L. Du, and H. Shrivastava, “Mathprompter: Mathematical reasoning using large language models,”arXiv preprint arXiv:2303.05398, 2023.
[284] E. Zelikman, J. Mu, N. D. Goodman, and Y. T.
Wu, “Star: Self-taught reasoner bootstrapping reasoning with reasoning,” 2022.
[285] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han, “Large language models can self-improve,”CoRR, vol. abs/2210.11610, 2022.
[286] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Kumar, B. Newman, B. Yuan, B. Yan, C. Zhang, C. Cosgrove, C. D. Manning, C. Ré, D. Acosta-Navas, D. A.
Hudson, E. Zelikman, E. Durmus, F. Ladhak, F. Rong, H. Ren, H. Yao, J. Wang, K. Santhanam, L. J.
Orr, L. Zheng, M. Yüksekgönül, M. Suzgun, N. Kim, N. Guha, N. S. Chatterji, O. Khattab, P. Henderson, Q. Huang, R. Chi, S. M. Xie, S. Santurkar, S. Ganguli, T. Hashimoto, T. Icard, T. Zhang, V. Chaudhary, W. Wang, X. Li, Y. Mai, Y. Zhang, and Y. Koreeda, “Holistic evaluation of language models,” CoRR, vol.
abs/2211.09110, 2022.
[287] A. Madaan and A. Yazdanbakhsh, “Text and patterns: For effective chain of thought, it takes two to tango,”CoRR, vol. abs/2209.07686, 2022.
[288] Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, and A. Smola, “Multimodal chain-of-thought reasoning in language models,” CoRR, vol. abs/2302.00923, 2023.
[289] F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder, D. Zhou, D. Das, and J. Wei, “Language models are multilingual chain-of-thought reasoners,” CoRR, vol.
abs/2210.03057, 2022.
[290] K. Shridhar, A. Stolfo, and M. Sachan, “Distilling multistep reasoning capabilities of large language models into smaller models via semantic decompositions,” ArXiv, vol. abs/2212.00193, 2022.
[291] N. Ho, L. Schmid, and S. Yun, “Large language models are reasoning teachers,” CoRR, vol. abs/2212.10071, 2022.
[292] L. C. Magister, J. Mallinson, J. Adámek, E. Malmi, and A. Severyn, “Teaching small language models to reason,” CoRR, vol. abs/2212.08410, 2022.
[293] Y. Fu, H. Peng, L. Ou, A. Sabharwal, and T. Khot, “Specializing smaller language models towards multistep reasoning,” CoRR, vol. abs/2301.12726, 2023.
[294] A. Chan, Z. Zeng, W. Lake, B. Joshi, H. Chen, and X. Ren, “Knife: Distilling meta-reasoning knowledge with free-text rationales,” in ICLR 2023 Workshop on Pitfalls of limited data and computation for Trustworthy ML.
[295] Z. Li, C. Wang, P. Ma, C. Liu, S. Wang, D. Wu, and C. Gao, “On the feasibility of specialized ability stealing for large language code models,” CoRR, 2023.
[296] Z. Dai, V. Y. Zhao, J. Ma, Y. Luan, J. Ni, J. Lu, A. Bakalov, K. Guu, K. B. Hall, and M. Chang, “Promp-tagator: Few-shot dense retrieval from 8 examples,”CoRR, 2022.
[297] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus of english: The penn treebank,” Comput. Linguistics, vol. 19, no. 2, pp. 313–330, 1993.
[298] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture models,” in ICLR (Poster).
OpenReview.net, 2017.
[299] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and A. Tamchyna, “Findings of the 2014 workshop on statistical machine translation,” in WMT@ACL. The Association for Computer Linguistics, 2014, pp. 12–58.
[300] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, M. Huck, A. Jimeno-Yepes, P. Koehn, V. Logacheva, C. Monz, M. Negri, A. Névéol, M. L.
Neves, M. Popel, M. Post, R. Rubino, C. Scarton, L. Specia, M. Turchi, K. Verspoor, and M. Zampieri, “Findings of the 2016 conference on machine translation,” in WMT.
The Association for Computer Linguistics, 2016, pp. 131–198.
[301] L. Barrault, O. Bojar, M. R. Costa-jussà, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, P. Koehn, S. Malmasi, C. Monz, M. Müller, S. Pal, M. Post, and M. Zampieri, “Findings of the 2019 conference on machine translation (WMT19),” in Proceedings of the Fourth Conference on Machine Translation, WMT 2019, Florence, Italy, August 1-2, 2019 - Volume 2: Shared Task Papers, Day 1, O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. Jimeno-Yepes, P. Koehn, A. Martins, C. Monz, M. Negri, A. Névéol, M. L. Neves, M. Post, M. Turchi, and K. Verspoor, Eds.
Association for Computational Linguistics, 2019, pp. 1–61.
[302] L. Barrault, M. Biesialska, O. Bojar, M. R. Costajussà, C. Federmann, Y. Graham, R. Grundkiewicz, B. Haddow, M. Huck, E. Joanis, T. Kocmi, P. Koehn, C. Lo, N. Ljubesic, C. Monz, M. Morishita, M. Nagata, T. Nakazawa, S. Pal, M. Post, and M. Zampieri, “Findings of the 2020 conference on machine translation (WMT20),” in Proceedings of the Fifth Conference on Machine Translation, WMT@EMNLP 2020, Online, November 19-20, 2020, L. Barrault, O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, Y. Graham,P. Guzman, B. Haddow, M. Huck, A. Jimeno-Yepes, P. Koehn, A. Martins, M. Morishita, C. Monz, M. Nagata, T. Nakazawa, and M. Negri, Eds. Association for Computational Linguistics, 2020, pp. 1–55.
[303] F. Akhbardeh, A. Arkhangorodsky, M. Biesialska, O. Bojar, R. Chatterjee, V. Chaudhary, M. R. Costajussà, C. España-Bonet, A. Fan, C. Federmann, M. Freitag, Y. Graham, R. Grundkiewicz, B. Haddow, L. Harter, K. Heafield, C. Homan, M. Huck, K. AmponsahKaakyire, J. Kasai, D. Khashabi, K. Knight, T. Kocmi, P. Koehn, N. Lourie, C. Monz, M. Morishita, M. Nagata, A. Nagesh, T. Nakazawa, M. Negri, S. Pal, A. A.
Tapo, M. Turchi, V. Vydrin, and M. Zampieri, “Findings of the 2021 conference on machine translation (WMT21),” in Proceedings of the Sixth Conference on Machine Translation, WMT@EMNLP 2021, Online Event, November 10-11, 2021, L. Barrault, O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow, M. Huck, A. Jimeno-Yepes, P. Koehn, T. Kocmi, A. Martins, M. Morishita, and C. Monz, Eds.
Association for Computational Linguistics, 2021, pp. 1–88.
[304] T. Kocmi, R. Bawden, O. Bojar, A. Dvorkovich, C. Federmann, M. Fishel, T. Gowda, Y. Graham, R. Grundkiewicz, B. Haddow, R. Knowles, P. Koehn, C. Monz, M. Morishita, M. Nagata, T. Nakazawa, M. Novák, M. Popel, and M. Popovic, “Findings of the 2022 conference on machine translation (WMT22),” in Proceedings of the Seventh Conference on Machine Translation, WMT 2022, Abu Dhabi, United Arab Emirates (Hybrid), December 7-8, 2022, P. Koehn, L. Barrault, O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow, M. Huck, A. Jimeno-Yepes, T. Kocmi, A. Martins, M. Morishita, C. Monz, M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves, M. Popel, M. Turchi, and M. Zampieri, Eds.
Association for Computational Linguistics, 2022, pp. 1–45.
[305] N. Goyal, C. Gao, V. Chaudhary, P. Chen, G. Wenzek, D. Ju, S. Krishnan, M. Ranzato, F. Guzmán, and A. Fan, “The flores-101 evaluation benchmark for lowresource and multilingual machine translation,” Trans.
Assoc. Comput. Linguistics, vol. 10, pp. 522–538, 2022.
[306] R. Bawden, E. Bilinski, T. Lavergne, and S. Rosset, “Diabla: a corpus of bilingual spontaneous written di-alogues for machine translation,” Lang. Resour. Evaluation, vol. 55, no. 3, pp. 635–660, 2021.
[307] R. Nallapati, B. Zhou, C. N. dos Santos, Ç. Gülçehre, and B. Xiang, “Abstractive text summarization using sequence-to-sequence rnns and beyond,” in Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, Y. Goldberg and S. Riezler, Eds.
ACL, 2016, pp. 280–290.
[308] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization,” in EMNLP.
Association for Computational Linguistics, 2018, pp. 1797–1807.
[309] F. Ladhak, E. Durmus, C. Cardie, and K. Mckeown, “Wikilingua: A new benchmark dataset for cross-lingual abstractive summarization,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 4034–4048.
[310] S. Moon, P. Shah, A. Kumar, and R. Subba, “Opendialkg: Explainable conversational reasoning with attention-based walks over knowledge graphs,” in ACL (1).
Association for Computational Linguistics, 2019, pp. 845–854.
[311] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Superglue: A stickier benchmark for general-purpose language understanding systems,” in NeurIPS, 2019, pp. 3261–3275.
[312] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt, “Measuring massive multitask language understanding,” in ICLR.
OpenReview.net, 2021.
[313] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou, and J. Wei, “Challenging big-bench tasks and whether chain-of-thought can solve them,” CoRR, vol.
abs/2210.09261, 2022.
[314] L. Xu, H. Hu, X. Zhang, L. Li, C. Cao, Y. Li, Y. Xu, K. Sun, D. Yu, C. Yu, Y. Tian, Q. Dong, W. Liu, B. Shi, Y. Cui, J. Li, J. Zeng, R. Wang, W. Xie, Y. Li, Y. Patterson, Z. Tian, Y. Zhang, H. Zhou, S. Liu, Z. Zhao, Q. Zhao, C. Yue, X. Zhang, Z. Yang, K. Richardson, and Z. Lan, “CLUE: A chinese language understanding evaluation benchmark,” in COLING.
International Committee on Computational Linguistics, 2020, pp.
4762–4772.
[315] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, “Measuring coding challenge competence with APPS,” in NeurIPS Datasets and Benchmarks, 2021.
[316] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, S. W. Yih, D. Fried, S. I. Wang, and T. Yu, “DS1000: A natural and reliable benchmark for data science code generation,” CoRR, vol. abs/2211.11501, 2022.
[317] Z. Wang, S. Zhou, D. Fried, and G. Neubig, “Executionbased evaluation for open-domain code generation,”CoRR, vol. abs/2212.10481, 2022.
[318] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. P. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M. Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov, “Natural questions: a benchmark for question answering research,” Trans. Assoc. Comput. Linguistics, pp. 452–466, 2019.
[319] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord, “Think you have solved question answering? try arc, the AI2 reasoning challenge,” CoRR, vol. abs/1803.05457, 2018.
[320] S. Lin, J. Hilton, and O. Evans, “Truthfulqa: Measuring how models mimic human falsehoods,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, 2022, pp. 3214–3252.
[321] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on freebase from question-answer pairs,” in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, 2013, pp. 1533–1544.
[322] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, 2017, pp.
1601–1611.
[323] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi, “PIQA: reasoning about physical commonsense in natural language,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2020, pp. 7432–7439.
[324] M. Dubey, D. Banerjee, A. Abdelkawi, and J. Lehmann, “Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia,” in The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II, 2019, pp. 69–78.
[325] Y. Gu, S. Kase, M. Vanni, B. M. Sadler, P. Liang, X. Yan, and Y. Su, “Beyond I.I.D.: three levels of generalization for question answering on knowledge bases,” in WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, 2021, pp. 3477–3488.
[326] S. Cao, J. Shi, L. Pan, L. Nie, Y. Xiang, L. Hou, J. Li, B. He, and H. Zhang, “KQA pro: A dataset with explicit compositional programs for complex question answering over knowledge base,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, 2022, pp. 6101–6119.
[327] X. Hu, X. Wu, Y. Shu, and Y. Qu, “Logical form generation via multi-task learning for complex question answering over knowledge bases,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, 2022, pp. 1687–1696.
[328] S. Longpre, Y. Lu, and J. Daiber, “MKQA: A linguistically diverse benchmark for multilingual open domain question answering,” Trans. Assoc. Comput. Linguistics, vol. 9, pp. 1389–1406, 2021.
[329] T. Saikh, T. Ghosal, A. Mittal, A. Ekbal, and P. Bhattacharyya, “Scienceqa: a novel resource for question answering on scholarly articles,” Int. J. Digit. Libr., vol. 23, no. 3, pp. 289–301, 2022.
[330] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a suit of armor conduct electricity? A new dataset for open book question answering,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 November 4, 2018, 2018, pp. 2381–2391.
[331] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng, “MS MARCO: A human generated machine reading comprehension dataset,” inProceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 colocated with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016, 2016.
[332] T. Khot, P. Clark, M. Guerquin, P. Jansen, and A. Sabharwal, “QASC: A dataset for question answering via sentence composition,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2020, pp. 8082–8090.
[333] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+ questions for machine comprehension of text,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, 2016, pp. 2383–2392.
[334] A. H. Miller, A. Fisch, J. Dodge, A. Karimi, A. Bordes, and J. Weston, “Key-value memory networks for directly reading documents,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, 2016, pp. 1400–1409.
[335] B. Goodrich, V. Rao, P. J. Liu, and M. Saleh, “Assessing the factual accuracy of generated text,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, 2019, pp. 166–175.
[336] K. Toutanova and D. Chen, “Observed versus latent features for knowledge base and text inference,” in Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, CVSC 2015, Beijing, China, July 26-31, 2015, 2015, pp. 57–66.
[337] K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively created graph database for structuring human knowledge,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, 2008, pp. 1247–1250.
[338] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d knowledge graph embeddings,” in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, 2018, pp. 1811–1818.
[339] G. A. Miller, “Wordnet: A lexical database for english,”Commun. ACM, pp. 39–41, 1995.
[340] F. Petroni, T. Rocktäschel, S. Riedel, P. S. H. Lewis, A. Bakhtin, Y. Wu, and A. H. Miller, “Language models as knowledge bases?” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, 2019, pp. 2463–2473.
[341] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “YAGO3: A knowledge base from multilingual wikipedias,” in Seventh Biennial Conference on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings, 2015.
[342] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,” in Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, 2007, pp. 697–706.
[343] C.
Clark, K.
Lee, M.
Chang, T.
Kwiatkowski, M. Collins, and K. Toutanova, “Boolq: Exploring the surprising dificulty of natural yes/no questions,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.
Association for Computational Linguistics, 2019, pp. 2924–2936.
[344] M. Sap, H. Rashkin, D. Chen, R. L. Bras, and Y. Choi, “Socialiqa: Commonsense reasoning about social interactions,” CoRR, vol. abs/1904.09728, 2019.
[345] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “Hellaswag: Can a machine really finish your sentence?” in Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, A. Korhonen, D. R. Traum, and L. Màrquez, Eds.
Association for Computational Linguistics, 2019, pp. 4791–4800.
[346] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “Winogrande: An adversarial winograd schema challenge at scale,” in AAAI. AAAI Press, 2020, pp. 8732–8740.
[347] M. Roemmele, C. A. Bejan, and A. S. Gordon, “Choice of plausible alternatives: An evaluation of commonsense causal reasoning,” in Logical Formalizations of Commonsense Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, Stanford, California, USA, March 21-23, 2011. AAAI, 2011.
[348] K. Sakaguchi, C. Bhagavatula, R. L. Bras, N. Tandon, P. Clark, and Y. Choi, “proscript: Partially ordered scripts generation,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 1620 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.
Association for Computational Linguistics, 2021, pp. 2138–2149.
[349] B. Dalvi, L. Huang, N. Tandon, W. Yih, and P. Clark, “Tracking state changes in procedural text: a challenge dataset and models for process paragraph comprehension,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACLHLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds.
Association for Computational Linguistics, 2018, pp. 1595–1604.
[350] S. Saha, P. Yadav, L. Bauer, and M. Bansal, “Explagraphs: An explanation graph generation task for structured commonsense reasoning,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.
Association for Computational Linguistics, 2021, pp. 7716–7740.
[351] O. Tafjord, B. Dalvi, and P. Clark, “Proofwriter: Generating implications, proofs, and abductive statements over natural language,” in Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, ser. Findings of ACL, C. Zong, F. Xia, W. Li, and R. Navigli, Eds., vol.
ACL/IJCNLP 2021.
Association for Computational Linguistics, 2021, pp. 3621–3634.
[352] B. Dalvi, P. Jansen, O. Tafjord, Z. Xie, H. Smith, L. Pipatanangkura, and P. Clark, “Explaining answers with entailment trees,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.
Association for Computational Linguistics, 2021, pp. 7358–7370.
[353] A. Saparov and H. He, “Language models are greedy reasoners: A systematic formal analysis of chain-ofthought,” CoRR, vol. abs/2210.01240, 2022.
[354] C. Anil, Y. Wu, A. Andreassen, A. Lewkowycz, V. Misra, V. V. Ramasesh, A. Slone, G. Gur-Ari, E. Dyer, and B. Neyshabur, “Exploring length generalization in large language models,” CoRR, vol.
abs/2207.04901, 2022.
[355] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, A. Kluska, A. Lewkowycz, A. Agarwal, A. Power, A. Ray, A. Warstadt, A. W. Kocurek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain, A. Askell, A. Dsouza, A. Rahane, A. S. Iyer, A. Andreassen, A. Santilli, A. Stuhlmüller, A. M. Dai, A. La, A. K. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli, A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubarajan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A. Karakas, and et al., “Beyond the imitation game: Quantifying and extrapolating the capabilities of language models,”CoRR, vol. abs/2206.04615, 2022.
[356] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig, “PAL: program-aided language models,” CoRR, vol. abs/2211.10435, 2022.
[357] S. Roy and D. Roth, “Solving general arithmetic word problems,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, L. Màrquez, C. Callison-Burch, J. Su, D. Pighin, and Y. Marton, Eds.
The Association for Computational Linguistics, 2015, pp. 1743–1752.
[358] A. Amini, S. Gabriel, S. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi, “Mathqa: Towards interpretable math word problem solving with operationbased formalisms,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Association for Computational Linguistics, 2019, pp. 2357–2367.
[359] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom, “Program induction by rationale generation: Learning to solve and explain algebraic word problems,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, R. Barzilay and M. Kan, Eds.
Association for Computational Linguistics, 2017, pp. 158–167.
[360] R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and H. Hajishirzi, “Mawps: A math word problem repository,” in Proceedings of the 2016 conference of the north american chapter of the association for computational linguistics: human language technologies, 2016, pp. 1152–1157.
[361] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner, “DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs,”in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACLHLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), 2019, pp. 2368–2378.
[362] S. Welleck, J. Liu, R. L. Bras, H. Hajishirzi, Y. Choi, and K. Cho, “Naturalproofs: Mathematical theorem proving in natural language,” in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021.
[363] A. Q. Jiang, W. Li, J. M. Han, and Y. Wu, “Lisa: Language models of isabelle proofs,” in 6th Conference on Artificial Intelligence and Theorem Proving, 2021, pp. 378–392.
[364] K. Zheng, J. M. Han, and S. Polu, “minif2f: a crosssystem benchmark for formal olympiad-level mathematics,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 2529, 2022.
OpenReview.net, 2022.
[365] Z. Azerbayev, B. Piotrowski, H. Schoelkopf, E. W.
Ayers, D. Radev, and J. Avigad, “Proofnet: Autoformalizing and formally proving undergraduate-level mathematics,” CoRR, vol. abs/2302.12433, 2023.
[366] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,”in ICLR, 2015.
[367] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for abstractive sentence summarization,” in EMNLP.
The Association for Computational Linguistics, 2015, pp. 379–389.
[368] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-domain questions,” in ACL (1).
Association for Computational Linguistics, 2017, pp. 1870–1879.
[369] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.
[370] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out.
Association for Computational Linguistics, Jul.
2004, pp. 74–81.
[371] K. Yang, Y. Tian, N. Peng, and D. Klein, “Re3: Generating longer stories with recursive reprompting and revision,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 711, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.
Association for Computational Linguistics, 2022, pp. 4393–4479.
[372] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, Q. V.
Do, Y. Xu, and P. Fung, “A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity,” CoRR, vol. abs/2302.04023, 2023.
[373] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found. Trends Program. Lang., vol. 4, no. 1-2, pp. 1–119, 2017.
[374] S. Zhang, Z. Chen, Y. Shen, M. Ding, J. B. Tenenbaum, and C. Gan, “Planning with large language models for code generation,” 2023.
[375] M. Welsh, “The end of programming,” Commun. ACM, vol. 66, no. 1, pp. 34–35, 2023.
[376] B. Wang, X. Deng, and H. Sun, “Iteratively prompt pre-trained language models for chain of thought,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.
Association for Computational Linguistics, 2022, pp. 2714–2730.
[377] O. Press, M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis, “Measuring and narrowing the compositionality gap in language models,” CoRR, vol.
abs/2210.03350, 2022.
[378] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C. Gong, Y. Shen, J. Zhou, S. Chen, T. Gui, Q. Zhang, and X. Huang, “A comprehensive capability analysis of gpt-3 and gpt-3.5 series models,” arXiv preprint arXiv:2303.10420, 2023.
[379] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential learning problem,” in Psychology of learning and motivation, 1989, pp. 109–165.
[380] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C. Kanan, “Measuring catastrophic forgetting in neural networks,” in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI18), New Orleans, Louisiana, USA, February 2-7, 2018, 2018, pp. 3390–3398.
[381] A. Roberts, C. Raffel, and N. Shazeer, “How much knowledge can you pack into the parameters of a language model?” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, 2020, pp.
5418–5426.
[382] G. Izacard, P. S. H. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick, J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave, “Few-shot learning with retrieval augmented language models,” CoRR, vol.
abs/2208.03299, 2022.
[383] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “Retrieval augmented language model pre-training,” in Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, 2020, pp. 3929–3938.
[384] P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrievalaugmented generation for knowledge-intensive NLP tasks,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 612, 2020, virtual, 2020.
[385] Y. Lan, G. He, J. Jiang, J. Jiang, W. X. Zhao, and J. Wen, “Complex knowledge base question answering: A survey,” CoRR, vol. abs/2108.06688, 2021.
[386] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. van den Driessche, J. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals, S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre, “Improving language models by retrieving from trillions of tokens,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser.
Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, Eds., vol. 162. PMLR, 2022, pp. 2206–2240.
[387] B. Peng, M. Galley, P. He, H. Cheng, Y. Xie, Y. Hu, Q. Huang, L. Liden, Z. Yu, W. Chen, and J. Gao, “Check your facts and try again: Improving large language models with external knowledge and automated feedback,” CoRR, vol. abs/2302.12813, 2023.
[388] S. Agarwal, I. Akkaya, V. Balcom, M. Bavarian, G. Bernadett-Shapiro, G. Brockman, M. Brundage, J. Chan, F. Chantzis, N. Deutsch, B. Eastman, A. Eleti, N. Felix, S. P. Fishman, I. Fulford, C. Gibson, J. Gross, M. Heaton, J. Hilton, X. Hu, S. Jain, H. Jin, L. Kilpatrick, C. Kim, M. Kolhede, A. Mayne, P. McMillan, D. Medina, J. Menick, A. Mishchenko, A. Nair, R. Nayak, A. Neelakantan, R. Nuttall, J. Parish, A. T. Passos, A. Perelman, F. de Avila Belbute Peres, V. Pong, J. Schulman, E. Sigler, N. Staudacher, N. Turley, J. Tworek, R. Greene, A. Vijayvergiya, C. Voss, J. Weng, M. Wiethoff, S. Yoo, K. Yu, W. Zaremba, S. Zhao, W. Zhuk, and B. Zoph, “Chatgpt plugins,”OpenAI Blog, March 2023.
[389] A. Lazaridou, E. Gribovskaya, W. Stokowiec, and N. Grigorev, “Internet-augmented language models through few-shot prompting for open-domain question answering,” CoRR, vol. abs/2203.05115, 2022.
[390] A. Madaan, N. Tandon, P. Clark, and Y. Yang, “Memory-assisted prompt editing to improve GPT-3 after deployment,” in EMNLP.
Association for Computational Linguistics, 2022, pp. 2833–2861.
[391] D. Dai, L. Dong, Y. Hao, Z. Sui, B. Chang, and F. Wei, “Knowledge neurons in pretrained transformers,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds. Association for Computational Linguistics, 2022, pp.
8493–8502.
[392] K. Meng, D. Bau, A. J. Andonian, and Y. Belinkov, “Locating and editing factual associations in gpt,” in Advances in Neural Information Processing Systems, 2022.
[393] Z. Shao, Y. Gong, Y. Shen, M. Huang, N. Duan, and W. Chen, “Synthetic prompting: Generating chain-ofthought demonstrations for large language models,”CoRR, vol. abs/2302.00618, 2023.
[394] N. Bian, X. Han, L. Sun, H. Lin, Y. Lu, and B. He, “ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models,” CoRR, 2023.
[395] M.
I.
Nye, A.
J.
Andreassen, G.
Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan, A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and A. Odena, “Show your work: Scratchpads for intermediate computation with language models,”CoRR, vol. abs/2112.00114, 2021.
[396] J. Qian, H. Wang, Z. Li, S. Li, and X. Yan, “Limitations of language models in arithmetic and symbolic induction,” CoRR, vol. abs/2208.05051, 2022.
[397] W. X. Zhao, K. Zhou, Z. Gong, B. Zhang, Y. Zhou, J. Sha, Z. Chen, S. Wang, C. Liu, and J. Wen, “Jiuzhang: A chinese pre-trained language model for mathematical problem understanding,” in KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, A. Zhang and H. Rangwala, Eds.
ACM, 2022, pp. 4571–4581.
[398] Q. Wang, C. Kaliszyk, and J. Urban, “First experiments with neural translation of informal to formal mathematics,” in Intelligent Computer Mathematics - 11th International Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceedings, ser. Lecture Notes in Computer Science, F. Rabe, W. M. Farmer, G. O.
Passmore, and A. Youssef, Eds., vol. 11006.
Springer, 2018, pp. 255–270.
[399] S. Polu and I. Sutskever, “Generative language modeling for automated theorem proving,” CoRR, vol.
abs/2009.03393, 2020.
[400] A. Q. Jiang, W. Li, S. Tworkowski, K. Czechowski, T. Odrzygózdz, P. Milos, Y. Wu, and M. Jamnik, “Thor: Wielding hammers to integrate language models and automated theorem provers,” CoRR, vol.
abs/2205.10893, 2022.
[401] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever, “Formal mathematics statement curriculum learning,” CoRR, vol. abs/2202.01344, 2022.
[402] A. Q. Jiang, S. Welleck, J. P. Zhou, W. Li, J. Liu, M. Jamnik, T. Lacroix, Y. Wu, and G. Lample, “Draft, sketch, and prove: Guiding formal theorem provers with informal proofs,” CoRR, vol. abs/2210.12283, 2022.
[403] Q. Lyu, S. Havaldar, A. Stein, L. Zhang, D. Rao, E. Wong, M. Apidianaki, and C. Callison-Burch, “Faithful chain-of-thought reasoning,” CoRR, vol.
abs/2301.13379, 2023.
[404] Y. Weng, M. Zhu, S. He, K. Liu, and J. Zhao, “Large language models are reasoners with self-verification,”CoRR, vol. abs/2212.09561, 2022.
[405] X. Pi, Q. Liu, B. Chen, M. Ziyadi, Z. Lin, Q. Fu, Y. Gao, J. Lou, and W. Chen, “Reasoning like program executors,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, 2022, pp. 761–779.
[406] A. Parisi, Y. Zhao, and N. Fiedel, “TALM: tool augmented language models,” CoRR, vol. abs/2205.12255, 2022.
[407] N. Nangia, C. Vania, R. Bhalerao, and S. R. Bowman, “Crows-pairs: A challenge dataset for measuring social biases in masked language models,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, 2020, pp. 1953–1967.
[408] R. Rudinger, J. Naradowsky, B. Leonard, and B. V.
Durme, “Gender bias in coreference resolution,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), 2018, pp. 8–14.
[409] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models as zero-shot planners: Extracting actionable knowledge for embodied agents,” in ICML, ser. Proceedings of Machine Learning Research, vol.
PMLR, 2022, pp. 9118–9147.
[410] T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P. Oudeyer, “Grounding large language models in interactive environments with online reinforcement learning,” CoRR, vol. abs/2302.02662, 2023.
[411] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba, “Virtualhome: Simulating household activities via programs,” in CVPR.
Computer Vision Foundation / IEEE Computer Society, 2018, pp. 8494–8502.
[412] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and D. Fox, “ALFRED: A benchmark for interpreting grounded instructions for everyday tasks,” in CVPR.
Computer Vision Foundation / IEEE, 2020, pp. 10 737–10 746.
[413] S. Srivastava, C. Li, M. Lingelbach, R. Martín-Martín, F. Xia, K. E. Vainio, Z. Lian, C. Gokmen, S. Buch, C. K.
Liu, S. Savarese, H. Gweon, J. Wu, and L. Fei-Fei, “BEHAVIOR: benchmark for everyday household activities in virtual, interactive, and ecological environments,” in CoRL, ser. Proceedings of Machine Learning Research, vol. 164.
PMLR, 2021, pp. 477–490.
[414] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, and M. Yan, “Do as I can, not as I say: Grounding language in robotic affordances,” CoRR, vol. abs/2204.01691, 2022.
[415] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as policies: Language model programs for embodied control,”CoRR, vol. abs/2209.07753, 2022.
[416] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated robot task plans using large language models,” CoRR, vol. abs/2209.11302, 2022.
[417] J. H. Clark, J. Palomaki, V. Nikolaev, E. Choi, D. Garrette, M. Collins, and T. Kwiatkowski, “Tydi QA: A benchmark for information-seeking question answering in typologically diverse languages,” Trans. Assoc. Comput. Linguistics, vol. 8, pp. 454–470, 2020.
[418] L. Gao, J. Tow, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu, K. McDonell, N. Muennighoff, J. Phang, L. Reynolds, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou, “A framework for few-shot language model evaluation,” Sep. 2021.
[419] Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, “Can chatgpt understand too? A comparative study on chat-gpt and fine-tuned BERT,” CoRR, vol. abs/2302.10198, 2023.
[420] J. Kocon, I. Cichecki, O. Kaszyca, M. Kochanek, D. Szydlo, J. Baran, J. Bielaniewicz, M. Gruza, A. Janz, K. Kanclerz, A. Kocon, B. Koptyra, W. MieleszczenkoKowszewicz, P. Milkowski, M. Oleksy, M. Piasecki, L. Radlinski, K. Wojtasik, S. Wozniak, and P. Kazienko, “Chatgpt: Jack of all trades, master of none,” CoRR, vol. abs/2302.10724, 2023.
[421] C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, and D. Yang, “Is chatgpt a general-purpose natural language processing task solver?” CoRR, vol. abs/2302.06476, 2023.
[422] Y. Ma, Y. Cao, Y. Hong, and A. Sun, “Large language model is not a good few-shot information extractor, but a good reranker for hard samples!” CoRR, vol.
abs/2303.08559, 2023.
[423] X. Chen, J. Ye, C. Zu, N. Xu, R. Zheng, M. Peng, J. Zhou, T. Gui, Q. Zhang, and X. Huang, “How robust is gpt-3.5 to predecessors? a comprehensive study on language understanding tasks,” 2023.
[424] M. Jang and T. Lukasiewicz, “Consistency analysis of chatgpt,” CoRR, vol. abs/2303.06273, 2023.
[425] R. Tang, X. Han, X. Jiang, and X. Hu, “Does synthetic data generation of llms help clinical text mining?” arXiv preprint arXiv:2303.04360, 2023.
[426] O. Nov, N. Singh, and D. M. Mann, “Putting chatgpt’s medical advice to the (turing) test,” CoRR, vol.
abs/2301.10035, 2023.
[427] S. Chen, B. H. Kann, M. B. Foote, H. J. Aerts, G. K.
Savova, R. H. Mak, and D. S. Bitterman, “The utility of chatgpt for cancer treatment information,” medRxiv, 2023.
[428] L. Yunxiang, L. Zihan, Z. Kai, D. Ruilong, and Z. You, “Chatdoctor: A medical chat model fine-tuned on llama model using medical domain knowledge,” 2023.
[429] K. Jeblick, B. Schachtner, J. Dexl, A. Mittermeier, A. T.
Stüber, J. Topalis, T. Weber, P. Wesp, B. O. Sabel, J. Ricke, and M. Ingrisch, “Chatgpt makes medicine easy to swallow: An exploratory case study on simplified radiology reports,” CoRR, vol. abs/2212.14882, 2022.
[430] H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz, “Capabilities of gpt-4 on medical challenge problems,” vol. abs/2303.13375, 2023.
[431] B. Guo, X. Zhang, Z. Wang, M. Jiang, J. Nie, Y. Ding, J. Yue, and Y. Wu, “How close is chatgpt to human experts? comparison corpus, evaluation, and detection,” CoRR, vol. abs/2301.07597, 2023.
[432] V. Liévin, C. E. Hother, and O. Winther, “Can large language models reason about medical questions?”CoRR, vol. abs/2207.08143, 2022.
[433] G. Kortemeyer, “Could an artificial-intelligence agent pass an introductory physics course?” arXiv preprint arXiv:2301.12127, 2023.
[434] S. Bordt and U. von Luxburg, “Chatgpt participates in a computer science exam,” CoRR, vol. abs/2303.09461, 2023.
[435] K. Malinka, M. Peresíni, A. Firc, O. Hujnak, and F. Janus, “On the educational impact of chatgpt: Is artificial intelligence ready to obtain a university degree?”CoRR, vol. abs/2303.11146, 2023.
[436] T. Susnjak, “Chatgpt: The end of online exam integrity?” CoRR, vol. abs/2212.09292, 2022.
[437] A. Blair-Stanek, N. Holzenberger, and B. V. Durme, “Can GPT-3 perform statutory reasoning?” CoRR, vol.
abs/2302.06100, 2023.
[438] F. Yu, L. Quartey, and F. Schilder, “Legal prompting: Teaching a language model to think like a lawyer,”CoRR, vol. abs/2212.01326, 2022.
[439] D. Trautmann, A. Petrova, and F. Schilder, “Legal prompt engineering for multilingual legal judgement prediction,” CoRR, vol. abs/2212.02199, 2022.
[440] J. H. Choi, K. E. Hickman, A. Monahan, and D. Schwarcz, “Chatgpt goes to law school,” Available at SSRN, 2023.
[441] J. J. Nay, “Law informs code: A legal informatics approach to aligning artificial intelligence with humans,”CoRR, vol. abs/2209.13020, 2022.
[442] A. Tamkin, M. Brundage, J. Clark, and D. Ganguli, “Understanding the capabilities, limitations, and societal impact of large language models,” CoRR, vol.
abs/2102.02503, 2021.
[443] Z. Sun, “A short survey of viewing large language models in legal aspect,” CoRR, vol. abs/2303.09136, 2023.
[444] A. Abid, M. Farooqi, and J. Zou, “Persistent antimuslim bias in large language models,” in AIES ’21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021, M. Fourcade, B. Kuipers, S. Lazar, and D. K. Mulligan, Eds.
ACM, 2021, pp. 298–306.
[445] A. Borji, “A categorical archive of chatgpt failures,”CoRR, vol. abs/2302.03494, 2023.
[446] M. Kosinski, “Theory of mind may have spontaneously emerged in large language models,” CoRR, vol.abs/2302.02083, 2023.
[447] M. M. Amin, E. Cambria, and B. W. Schuller, “Will affective computing emerge from foundation models and general ai? A first evaluation on chatgpt,” CoRR, vol.
abs/2303.03186, 2023.
[448] R. Aiyappa, J. An, H. Kwak, and Y.-Y. Ahn, “Can we trust the evaluation on chatgpt?” vol. abs/2303.12767, 2023.
[449] H. Cho, H. J. Kim, J. Kim, S. Lee, S. Lee, K. M. Yoo, and T. Kim, “Prompt-augmented linear probing: Scaling beyond the limit of few-shot in-context learners,”CoRR, vol. abs/2212.10873, 2022.
[450] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A survey,” ACM Comput. Surv., vol. 55, no. 6, pp. 109:1–109:28, 2023.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。