当前位置:   article > 正文

Python之pandas-profiling:pandas-profiling库的简介、安装、使用方法之详细攻略_pandas-profiling的底层是什么

pandas-profiling的底层是什么

Python之pandas-profiling:pandas-profiling库的简介、安装、使用方法之详细攻略

目录

pandas-profiling库的简介

pandas-profiling库的安装

pandas-profiling库的使用方法

1、基础用法


pandas-profiling库的简介

        从pandas数据路由生成配置文件报告。pandas df.describe()函数很棒,但对于严肃的探索性数据分析来说有点基础。pandas_profiling通过php .profile_report()扩展了pandas DataFrame,用于快速数据分析。对于每一列,以下统计数据-如果与列类型相关-在一个交互式HTML报告中显示:

  • 类型推断:检测数据流中的列类型。
  • 基本要素:类型、唯一值、缺失值
  • 分位数统计如最小值,Q1,中位数,Q3,最大值,范围,四分位数范围
  • 描述统计,如平均值,众数,标准差,总和,中位数绝对偏差,变异系数,峰度,偏度
  • 最常见的价值观
  • 柱状图
  • 高度相关变量的相关性突出,Spearman, Pearson和Kendall矩阵
  • 缺失值矩阵,计数,热图和缺失值的树状图
  • 学习文本数据的分类(大写,空格),脚本(拉丁语,西里尔字母)和块(ASCII)。
  • 文件和图像分析提取文件大小,创建日期和尺寸和扫描截短的图像或那些包含EXIF信息。

pandas-profiling库的安装

  1. pip install pandas-profiling
  2. pip install pandas-profiling -i https://pypi.tuna.tsinghua.edu.cn/simple

pandas-profiling库的使用方法

1、基础用法

  1. import numpy as np
  2. import pandas as pd
  3. from pandas_profiling import ProfileReport
  4. df = pd.DataFrame(
  5. np.random.rand(100, 5),
  6. columns=["a", "b", "c", "d", "e"]
  7. )
  8. profile = ProfileReport(df, title="Pandas Profiling Report")
  9. profile.to_file("your_report.html")
  10. profile = ProfileReport(large_dataset, minimal=True)
  11. profile.to_file("output.html")
  12. profile = df.profile_report(title='Pandas Profiling Report', plot={'histogram': {'bins': 8}})
  13. profile.to_file("output.html")

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/694970
推荐阅读
相关标签
  

闽ICP备14008679号