当前位置:   article > 正文

【每日一更】KNN-K近邻算法_knn算法欧式距离公式

knn算法欧式距离公式

目录

一、什么是K-近邻算法:

1.K-近邻算法(KNN)概念:

2.KNN定义:

3.KNN距离公式:

二、电影分析案例分析:

三、K-近邻算法API初步使用:

1.机器学习流程复习:

2.Sclikit-learn工具介绍:

3.Scikit-learn包含的内容:

4.K-近邻算法API:

四、距离度量:

1.欧式距离(Euclidean Distance):

2.曼哈顿距离(Manhattan Distance):

3.切比雪夫距离 (Chebyshev Distance):

4.闵可夫斯基距离(Minkowski Distance):

小结:

5.标准化欧式距离(Standardized EuclideanDistance):

6.余弦距离(Cosine Distance):

7.汉明距离(Hamming Distance):

8.杰卡德距离:

9.马氏距离:

五、K值选择:

六、Kd树:

1.Kd树概述:

原理:

2.树的建立:

最近邻域搜索(Nearest-Neighbor Lookup)

构造方法:

3.案例分析:

思路引导:

最近领域的搜索:


一、什么是K-近邻算法:

  • 根据你的邻居来推断出你的类别!

1.K-近邻算法(KNN)概念:

        K Nearest Neighbor算法又叫KNN算法,这个算法是机器学里面比较经典的算法,总体来说KNN算法是相对比较容易理解的算法。

2.KNN定义:

        如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

3.KNN距离公式:

        两个样本的距离可以通过如下计算公式计算,又叫欧式公式:

  • 二维平面上点(x1,y1)与(x2,y2)间的欧式公式:

  • 三维空间点(x1,y1,z1)与(x2,y2x,z2)间的欧式公式:

  • n维空间点a(x11,x12,......,x1n)与b(x21,x22,......,x2n)间的欧式公式:


二、电影分析案例分析:

假设我们有几部电影:

其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想:

分别计算每个电影和被预测电影的距离,然后求解:


三、K-近邻算法API初步使用:

1.机器学习流程复习:

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习
  • 5.模型评估

2.Sclikit-learn工具介绍:

  • Python语言的机器学习工具
  • Scikit-learn包括许多知名的机器学习算法的实现
  • Scikit-learn文档完善,容易上手,丰富的API
  • 目前稳定版本0.19.1
pip3 install scikit-learn==0.91.1

安装完成之后,通过以下命令检查是否安装成功:

import sklearn

注意:安装Scikit-learn需要Numpy、Scipy等库支持

3.Scikit-learn包含的内容:

  • 分类、聚类、回归
  • 特征工程
  • 模型选择、调优

4.K-近邻算法API:

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5):n_neighbors:int,可选,默认是5,查询默认使用的邻居数

  1. from sklearn.neighbors import KNeighborsClassifier
  2. # 指定邻居数量:
  3. estimator = KNeighborsClassifier(n_neighbors=2)
  4. # 获取数据:
  5. x = [[1], [2], [0], [0]]
  6. y = [1, 1, 0, 0]
  7. # fit:训练模型
  8. estimator.fit(x, y)
  9. # 通过训练结果进行预测:
  10. print(estimator.predict([[0]]))

四、距离度量:

1.欧式距离(Euclidean Distance):

        欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。

  • 二维平面上点(x1,y1)与(x2,y2)间的欧式公式:

  • 三维空间点(x1,y1,z1)与(x2,y2x,z2)间的欧式公式:

  • n维空间点a(x11,x12,......,x1n)与b(x21,x22,......,x2n)间的欧式公式:

2.曼哈顿距离(Manhattan Distance)

        在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。

3.切比雪夫距离 (Chebyshev Distance):

        国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离。

4.闵可夫斯基距离(Minkowski Distance):

        闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

其中p是一个变参数:

  • 当p=1时,就是曼哈顿距离;
  • 当p=2时,就是欧氏距离;
  • 当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

        闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点,二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

        a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

闵氏距离的缺点:

  • 将各个分量的量纲(scale),也就是“单位”相同的看待了;
  • 未考虑各个分量的分布(期望,方差等)可能是不同的。

5.标准化欧式距离(Standardized EuclideanDistance):

        标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。

        思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。假设样本集X的均值(mean)为m标准差(standard deviation)为s,X的“标准化变量”表示为:

        如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。

6.余弦距离(Cosine Distance):

        几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。

  • 二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

  • 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦为:

        即:夹角余弦取值范围为[-1,1]。余弦越大表示两个向量的夹角越小,余弦越小表示两向量的夹角越大。当两个向量的方向重合时余弦取最大值1,当两个向量的方向完全相反余弦取最小值-1。

7.汉明距离(Hamming Distance):

两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。

  1. The Hamming distance between "1011101" and "1001001" is 2.
  2. The Hamming distance between "2143896" and "2233796" is 3.
  3. The Hamming distance between "toned" and "roses" is 3.

        汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。

        应用:汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。

举例:

  1. X=[[0,1,1],[1,1,2],[1,5,2]]
  2. 注:以下计算方式中,把2个向量之间的汉明距离定义为2个向量不同的分量所占的百分比。
  3. 经计算得:
  4. d = 0.6667 1.0000 0.3333

8.杰卡德距离:

        杰卡德相似系数(Jaccard similarity coefficient):两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示:

        杰卡德距离(Jaccard Distance):与杰卡德相似系数相反,用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度:

9.马氏距离:

        下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。

        马氏距离是基于样本分布的一种距离。

        马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。它是一种有效的计算两个位置样本集的相似度的方法。

        与欧式距离不同的是,它考虑到各种特性之间的联系,即独立于测量尺度。

        马氏距离定义:设总体G为m维总体(考察m个指标),均值向量为μ=(μ1,μ2,… ...,μm,)`,协方差阵为∑=(σij),

        则样本X=(X1,X2,… …,Xm,)`与总体G的马氏距离定义为:

        马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为∑的随机变量的差异程度:如果协方差矩阵为单位矩阵,马氏距离就简化为欧式距离;如果协方差矩阵为对角矩阵,则其也可称为正规化的欧式距离。

马氏距离特性:

  • 量纲无关,排除变量之间的相关性的干扰;
  • 马氏距离的计算是建立在总体样本的基础上的,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;
  • 计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。
  • 还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6),(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。


五、K值选择:

  • K值过小:容易受到异常点的影响,过拟合。
  • K值过大:受到样本均衡的问题,欠拟合。

拟合:

        形象的说,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。拟合的曲线一般可以用函数表示,根据这个函数的不同有不同的拟合名字。

K值选择问题,李航博士的一书「统计学习方法」上所说:

  • 选择较小的K值,就相当于用较小的领域中的训练实例进行预测,“学习”近似误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是“学习”的估计误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
  • 选择较大的K值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单。
  • K=N(N为训练样本个数),则完全不足取,因为此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的类,模型过于简单,忽略了训练实例中大量有用信息。
  • 在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是把训练数据在分成两组:训练集和验证集)来选择最优的K值。对这个简单的分类器进行泛化,用核方法把这个线性模型扩展到非线性的情况,具体方法是把低维数据集映射到高维特征空间。
  • 近似误差:对现有训练集的训练误差,关注训练集,如果近似误差过小可能会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。模型本身不是最接近最佳模型。
  • 估计误差:可以理解为对测试集的测试误差,关注测试集,估计误差小说明对未知数据的预测能力好,模型本身最接近最佳模型。

六、Kd树:

        k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。

        为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。

1.Kd树概述:

        根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)

        kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。

        这样优化后的算法复杂度可降低到O(DNlog(N))。感兴趣的读者可参阅论文:Bentley,J.L.,Communications of the ACM(1975)。

        1989年,另外一种称为Ball Tree的算法,在kd Tree的基础上对性能进一步进行了优化。感兴趣的读者可以搜索Five balltree construction algorithms来了解详细的算法信息。

原理:

        黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面。

黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色。

2.树的建立:

最近邻域搜索(Nearest-Neighbor Lookup)

        kd树(K-dimension tree)是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。

        类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了:[0 1 2 3 4 5 6 7 8 9],按前一种方式我们进行了很多没有必要的查找,现在如果我们以5为分界点,那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。

        因此,根本就没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面。

构造方法:

  • 构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;
  • 通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。
  • 上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。
  • 通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

        KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

        第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。

3.案例分析:

        给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树。

思路引导:

        根结点对应包含数据集T的矩形,选择x(1)轴,6个数据点的x(1)坐标中位数是6,这里选最接近的(7,2)点,以平面x(1)=7将空间分为左、右两个子矩形(子结点);接着左矩形以x(2)=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的x(2)坐标中位数正好为4),右矩形以x(2)=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树。

最近领域的搜索:

        假设标记为星星的点是 test point, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来。

        样本集{(2,3),(5,4), (9,6), (4,7), (8,1), (7,2)}

查找点(2.1,3.1):

        在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4), (2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为0.141;

        然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了。

        于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索。

        至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141。

3.2.2 查找点(2,4.5):

        在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202;

        然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04。

        回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)

        回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索。

        至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2,4.5)的最近邻点,最近距离为1.5。


【今日小结】

        学习了KNN算法的基础,还需要结合练习才能掌握相关内容的使用场景,尽可能做到熟练运用!后面持续学习机器学习相关内容!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/703061
推荐阅读
相关标签
  

闽ICP备14008679号