赞
踩
作业内容:自己设计卷积核大小,池化层、以及线性层的参数,要求有三个卷积层,三个激活层、三个池化层以及三个线性层,用自己设计的卷积网络训练MNIST数据集。
选择下图结构的卷积神经网络来进行训练:
步骤:
具体代码如下:
- batch_size = 64
- transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
- train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
- train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
- test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
- test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
- class Net(torch.nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=3)
- self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=2)
- self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=3)
- self.pooling = torch.nn.MaxPool2d(2)
- self.fc1 = torch.nn.Linear(120, 60)
- self.fc2 = torch.nn.Linear(60, 30)
- self.fc3 = torch.nn.Linear(30, 10)
-
- def forward(self, x):
- batch_size = x.size(0)
- x = F.relu(self.pooling(self.conv1(x)))
- x = F.relu(self.pooling(self.conv2(x)))
- x = F.relu(self.pooling(self.conv3(x)))
- x = x.view(batch_size, -1)
- x = self.fc1(x)
- x = self.fc2(x)
- x = self.fc3(x)
- return x
-
-
- model = Net()
- device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- model.to(device)
- criterion = torch.nn.CrossEntropyLoss()
- optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
- def train(epoch):
- running_loss=0.0
- for batch_idx,data in enumerate(train_loader,0):
- inputs,target=data
- inputs,target=inputs.to(device),target.to(device)
- optimizer.zero_grad()
- outputs=model(inputs)
- loss=criterion(outputs,target)
- loss.backward()
- optimizer.step()
-
- running_loss+=loss.item()
- if batch_idx%300==299:
- print('[%d,%.5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
- running_loss=0.0
-
- def test():
- correct=0
- total=0
- with torch.no_grad():
- for data in test_loader:
- inputs, target=data
- inputs,target=inputs.to(device),target.to(device)
- outputs=model(inputs)
- _,predicted=torch.max(outputs.data,dim=1)
- total+=target.size(0)
- correct+=(predicted==target).sum().item()
- print('Accuracy on test set:%d %% [%d%d]' %(100*correct/total,correct,total))
-
- if __name__=='__main__':
- for epoch in range(10):
- train(epoch)
- test()
- import torch
- from torchvision import transforms
- from torchvision import datasets
- from torch.utils.data import DataLoader
- import torch.nn.functional as F
- import torch.optim as optim
-
- batch_size = 64
- transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
- train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
- train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
- test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
- test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
-
-
- class Net(torch.nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=3)
- self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=2)
- self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=3)
- self.pooling = torch.nn.MaxPool2d(2)
- self.fc1 = torch.nn.Linear(120, 60)
- self.fc2 = torch.nn.Linear(60, 30)
- self.fc3 = torch.nn.Linear(30, 10)
-
- def forward(self, x):
- batch_size = x.size(0)
- x = F.relu(self.pooling(self.conv1(x)))
- x = F.relu(self.pooling(self.conv2(x)))
- x = F.relu(self.pooling(self.conv3(x)))
- x = x.view(batch_size, -1)
- x = self.fc1(x)
- x = self.fc2(x)
- x = self.fc3(x)
- return x
-
-
- model = Net()
- device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- model.to(device)
-
- criterion = torch.nn.CrossEntropyLoss()
- optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
-
-
- def train(epoch):
- running_loss=0.0
- for batch_idx,data in enumerate(train_loader,0):
- inputs,target=data
- inputs,target=inputs.to(device),target.to(device)
- optimizer.zero_grad()
- outputs=model(inputs)
- loss=criterion(outputs,target)
- loss.backward()
- optimizer.step()
-
- running_loss+=loss.item()
- if batch_idx%300==299:
- print('[%d,%.5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
- running_loss=0.0
-
- def test():
- correct=0
- total=0
- with torch.no_grad():
- for data in test_loader:
- inputs, target=data
- inputs,target=inputs.to(device),target.to(device)
- outputs=model(inputs)
- _,predicted=torch.max(outputs.data,dim=1)
- total+=target.size(0)
- correct+=(predicted==target).sum().item()
- print('Accuracy on test set:%d %% [%d%d]' %(100*correct/total,correct,total))
-
- if __name__=='__main__':
- for epoch in range(10):
- train(epoch)
- test()
运行结果如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。