赞
踩
yolo无痛涨点trick,简单实用
先贴一张最近一篇论文的结果
后来的几种iou的消融实验结果在一定程度上要优于CIoU。
本文将在yolov5的基础上增加SIoU,EIoU,Focal-XIoU(X为C,D,G,E,S等)以及AlphaXIoU。
在yolov5的utils文件夹下新增iou.py文件
- import math
- import torch
-
-
- def bbox_iou(box1,
- box2,
- xywh=True,
- GIoU=False,
- DIoU=False,
- CIoU=False,
- SIoU=False,
- EIoU=False,
- WIoU=False,
- Focal=False,
- alpha=1,
- gamma=0.5,
- scale=False,
- monotonous=False,
- eps=1e-7):
- """
- 计算bboxes iou
- Args:
- box1: predict bboxes
- box2: target bboxes
- xywh: 将bboxes转换为xyxy的形式
- GIoU: 为True时计算GIoU LOSS (yolov5自带)
- DIoU: 为True时计算DIoU LOSS (yolov5自带)
- CIoU: 为True时计算CIoU LOSS (yolov5自带,默认使用)
- SIoU: 为True时计算SIoU LOSS (新增)
- EIoU: 为True时计算EIoU LOSS (新增)
- WIoU: 为True时计算WIoU LOSS (新增)
- Focal: 为True时,可结合其他的XIoU生成对应的IoU变体,如CIoU=True,Focal=True时为Focal-CIoU
- alpha: AlphaIoU中的alpha参数,默认为1,为1时则为普通的IoU,如果想采用AlphaIoU,论文alpha默认值为3,此时设置CIoU=True则为AlphaCIoU
- gamma: Focal_XIoU中的gamma参数,默认为0.5
- scale: scale为True时,WIoU会乘以一个系数
- monotonous: 3个输入分别代表WIoU的3个版本,None: origin v1, True: monotonic FM v2, False: non-monotonic FM v3
- eps: 防止除0
- Returns:
- iou
- """
- # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
-
- # Get the coordinates of bounding boxes
- if xywh: # transform from xywh to xyxy
- (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
- w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
- b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
- b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
- else: # x1, y1, x2, y2 = box1
- b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
- b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
- w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
- w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
-
- # Intersection area
- inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
- (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
-
- # Union Area
- union = w1 * h1 + w2 * h2 - inter + eps
- if scale:
- wise_scale = WIoU_Scale(1 - (inter / union), monotonous=monotonous)
-
- # IoU
- # iou = inter / union # ori iou
- iou = torch.pow(inter / (union + eps), alpha) # alpha iou
- if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
- cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
- ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
- if CIoU or DIoU or EIoU or SIoU or WIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
- c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal squared
- rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (
- b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha # center dist ** 2
- if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
- v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
- with torch.no_grad():
- alpha_ciou = v / (v - iou + (1 + eps))
- if Focal:
- return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),
- gamma) # Focal_CIoU
- return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
- elif EIoU:
- rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
- rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
- cw2 = torch.pow(cw ** 2 + eps, alpha)
- ch2 = torch.pow(ch ** 2 + eps, alpha)
- if Focal:
- return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps), gamma) # Focal_EIou
- return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
- elif SIoU:
- # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
- s_cw, s_ch = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps, (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
- sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
- sin_alpha_1, sin_alpha_2 = torch.abs(s_cw) / sigma, torch.abs(s_ch) / sigma
- threshold = pow(2, 0.5) / 2
- sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
- angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
- rho_x, rho_y = (s_cw / cw) ** 2, (s_ch / ch) ** 2
- gamma = angle_cost - 2
- distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
- omiga_w, omiga_h = torch.abs(w1 - w2) / torch.max(w1, w2), torch.abs(h1 - h2) / torch.max(h1, h2)
- shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
- if Focal:
- return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(
- inter / (union + eps), gamma) # Focal_SIou
- return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
- elif WIoU:
- if scale:
- return getattr(WIoU_Scale, '_scaled_loss')(wise_scale), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU v3 https://arxiv.org/abs/2301.10051
- return iou, torch.exp((rho2 / c2)) # WIoU v1
- if Focal:
- return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma) # Focal_DIoU
- return iou - rho2 / c2 # DIoU
- c_area = cw * ch + eps # convex area
- if Focal:
- return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps), gamma) # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
- return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU https://arxiv.org/pdf/1902.09630.pdf
- if Focal:
- return iou, torch.pow(inter / (union + eps), gamma) # Focal_IoU
- return iou # IoU
-
-
- class WIoU_Scale:
- """
- monotonous: {
- None: origin v1
- True: monotonic FM v2
- False: non-monotonic FM v3
- }
- momentum: The momentum of running mean
- """
- iou_mean = 1.
- _momentum = 1 - pow(0.5, exp=1 / 7000)
- _is_train = True
-
- def __init__(self, iou, monotonous=False):
- self.iou = iou
- self.monotonous = monotonous
- self._update(self)
-
- @classmethod
- def _update(cls, self):
- if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
- cls._momentum * self.iou.detach().mean().item()
-
- @classmethod
- def _scaled_loss(cls, self, gamma=1.9, delta=3):
- if isinstance(self.monotonous, bool):
- if self.monotonous:
- return (self.iou.detach() / self.iou_mean).sqrt()
- else:
- beta = self.iou.detach() / self.iou_mean
- alpha = delta * torch.pow(gamma, beta - delta)
- return beta / alpha
- return 1
-
在调用bbox_iou函数的地方做如下修改(主要是__call__中):
- class ComputeLoss:
- sort_obj_iou = False
-
- # Compute losses
- def __init__(self, model, autobalance=False):
- device = next(model.parameters()).device # get model device
- h = model.hyp # hyperparameters
-
- # Define criteria
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
-
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
-
- # Focal loss
- g = h['fl_gamma'] # focal loss gamma
- if g > 0:
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
- m = de_parallel(model).model[-1] # Detect() module
- self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
- self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
- self.na = m.na # number of anchors
- self.nc = m.nc # number of classes
- self.nl = m.nl # number of layers
- self.anchors = m.anchors
- self.device = device
-
- def __call__(self, p, targets): # predictions, targets
- lcls = torch.zeros(1, device=self.device) # class loss
- lbox = torch.zeros(1, device=self.device) # box loss
- lobj = torch.zeros(1, device=self.device) # object loss
- tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
-
- # Losses
- for i, pi in enumerate(p): # layer index, layer predictions
- b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
- tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
-
- n = b.shape[0] # number of targets
- if n:
- # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
- pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
-
- # Regression
- pxy = pxy.sigmoid() * 2 - 0.5
- pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
- pbox = torch.cat((pxy, pwh), 1) # predicted box
- # iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
- # lbox += (1.0 - iou).mean() # iou loss
- # //
- iou = bbox_iou(pbox, tbox[i], WIoU=True, scale=True)
- if isinstance(iou, tuple):
- if len(iou) == 2:
- lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())).mean()
- iou = iou[0].squeeze()
- else:
- lbox += (iou[0] * iou[1]).mean()
- iou = iou[2].squeeze()
- else:
- lbox += (1.0 - iou.squeeze()).mean() # iou loss
- iou = iou.squeeze()
- # /
-
- # Objectness
- iou = iou.detach().clamp(0).type(tobj.dtype)
- if self.sort_obj_iou:
- j = iou.argsort()
- b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
- if self.gr < 1:
- iou = (1.0 - self.gr) + self.gr * iou
- tobj[b, a, gj, gi] = iou # iou ratio
-
- # Classification
- if self.nc > 1: # cls loss (only if multiple classes)
- t = torch.full_like(pcls, self.cn, device=self.device) # targets
- t[range(n), tcls[i]] = self.cp
- lcls += self.BCEcls(pcls, t) # BCE
-
- # Append targets to text file
- # with open('targets.txt', 'a') as file:
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
- obji = self.BCEobj(pi[..., 4], tobj)
- lobj += obji * self.balance[i] # obj loss
- if self.autobalance:
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
-
- if self.autobalance:
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
- lbox *= self.hyp['box']
- lobj *= self.hyp['obj']
- lcls *= self.hyp['cls']
- bs = tobj.shape[0] # batch size
-
- return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
-
- def build_targets(self, p, targets):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- na, nt = self.na, targets.shape[0] # number of anchors, targets
- tcls, tbox, indices, anch = [], [], [], []
- gain = torch.ones(7, device=self.device) # normalized to gridspace gain
- ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
- targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
-
- g = 0.5 # bias
- off = torch.tensor(
- [
- [0, 0],
- [1, 0],
- [0, 1],
- [-1, 0],
- [0, -1], # j,k,l,m
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
- ],
- device=self.device).float() * g # offsets
-
- for i in range(self.nl):
- anchors, shape = self.anchors[i], p[i].shape
- gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- t = targets * gain # shape(3,n,7)
- if nt:
- # Matches
- r = t[..., 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
- t = t[j] # filter
-
- # Offsets
- gxy = t[:, 2:4] # grid xy
- gxi = gain[[2, 3]] - gxy # inverse
- j, k = ((gxy % 1 < g) & (gxy > 1)).T
- l, m = ((gxi % 1 < g) & (gxi > 1)).T
- j = torch.stack((torch.ones_like(j), j, k, l, m))
- t = t.repeat((5, 1, 1))[j]
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
- else:
- t = targets[0]
- offsets = 0
-
- # Define
- bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
- a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid indices
-
- # Append
- indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
- tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
- anch.append(anchors[a]) # anchors
- tcls.append(c) # class
-
- return tcls, tbox, indices, anch
'运行
注意需要从对应的py文件中import对应的函数,并需要注释原始函数
# from utils.metrics import bbox_iou
from utils.iou import bbox_iou
如果需要应用对应的IoU loss的变体,即可将Focal设置为True,并将对应的IoU也设置为True,如CIoU=True,Focal=True时为Focal-CIoU,此时可以调整gamma,默认设置为0.5。
如果想要使用AlphaXIoU,将alpha设置为3同时将对应的IoU也设置为True即可,alpha默认设置为1。
更新WIoU,monotonous有3个输入分别代表WIoU的3个版本,None: origin v1, True: monotonic FM v2, False: non-monotonic FM v3,同时需要设置scale,scale为True时,WIoU会乘以一个系数,结合monotonous即会对应WIoU的3个版本。
yolov7的代码结构也是一样的,也可以替换到yolov7中,__call__中的bbox_iou函数要改成yolov5的调用方式(pbox不用矩阵转置(T))。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。