赞
踩
目录
指长短期记忆人工神经网络。长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的。
RNN:Recurrent Neural Network 循环神经网络的计算过程如下:
,
,
,
在LSTM当中将换成了
,而且,对
的更新也换成了
。
墙裂推荐吴恩达的课程,图片来自他讲LSTM,非常清楚,LSTM的计算过程如下:
计算三个门的结果除了外还可以再加一个上次细胞状态
,这个操作叫窥视连孔连接,peophole connection。
用random walk model 得出概率的走向,下面这段代码可以玩一下。
- __author__ = 'Administrator'
- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
-
- fig=plt.figure()
-
- #time span
- T=500
- #drift factor飘移率
- mu=0.00005
- #volatility波动率
- sigma=0.04
- #t=0初试价
- S0=np.random.random()
- #length of steps
- dt=1
- N=round(T/dt)
- t=np.linspace(0,T,N)
-
- W=np.random.standard_normal(size=N)
- print("W ",W.shape)
- #W.shape=(500,)
- #几何布朗运动过程
- W=np.cumsum(W)*np.sqrt(dt)
- X=(mu-0.5*sigma**2)*t+sigma*W
- S=S0*np.exp(X)
-
- fd=pd.DataFrame({'pro':S})
- fd.to_csv('pic/random_walk.csv',sep=',',index=False)
- plt.plot(t,S,lw=2)
- plt.show()

预测某个app在未来某个时间再次被打开的概率,其概率曲线用随机行走模型 random walk model 得出,数据大小都为0-1之间的小数,如果得出的图的取值不在【0,1】,多画几次~,因为每个动作都随机,很有可能会超过【0,1】这个范围。假设共500个分钟,先用70%的数据进行训练,打乱数据集后,再选取30%的数据进行测试,这样可以提高泛化能力。
配置:用cpu跑的,相当的慢了,使用keras
- import pandas as pd
- import numpy as np
- import keras
- import matplotlib.pyplot as plt
- #from sklearn.preprocessing import MinMaxScaler
- from keras.models import Sequential
- from keras.layers import LSTM, Dense, Activation
- import os
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
- test_num=500
- train_times=1000
- #random walk model to generate the probability tendency of task
- def random_walk_model():
- fig=plt.figure()
- #time span
- T=500
- #drift factor飘移率
- mu=0.00005
- #volatility波动率
- sigma=0.04
- #t=0初试价
- S0=np.random.random()
- #length of steps
- dt=1
- N=round(T/dt)
- #generate 500 steps and collect it into t
- t=np.linspace(0,T,N)
-
- #W is standard normal list
- W=np.random.standard_normal(size=N)
- print("W ",W)
- #W.shape=(500,)
- #几何布朗运动过程,产生概率轨迹
- W=np.cumsum(W)*np.sqrt(dt)
- X=(mu-0.5*sigma**2)*t+sigma*W
- S=S0*np.exp(X)
- plt.plot(t,S,lw=2)
- plt.show()
- #save the probability tendency of picture
- fd=pd.DataFrame({'pro':S})
- fd.to_csv('pic/random_walk_model.csv',sep=',',index=False)
- plt.savefig('pic/random_data.png')
- return S
- def random_test(sequence_length=5,split=0.7):
-
- #get the stored data by using pandas
- test_data = pd.read_csv('pic/random_walk_model.csv', sep=',',usecols=[0])
- #print("test_data:",test_data)
-
- #generate new test data for 2d
- test_data = np.array(test_data).astype('float64')
- #print('test_data:',test_data.shape)
- #test_data: (500, 1)
-
- #70% are used to be trained, the rest is used to be tested
- split_boundary = int(test_data.shape[0] * split)
- #print('split_boundary:',split_boundary)
- #split_boundary:350
-
- pro_test=np.linspace(split_boundary,test_data.shape[0],test_data.shape[0]-split_boundary)
- pro_x=np.linspace(1,split_boundary,split_boundary)
- plt.plot(pro_x,test_data[:split_boundary])
- plt.plot(pro_test,test_data[split_boundary:],'red')
- plt.legend(['train_data','test_data'])
- plt.xlabel('times')
- plt.ylabel('probability')
- plt.show()
- #print("test_data: ",test_data,test_data.shape),test_data.shape=(600,1),array to list format
-
- #generate 3d format of data and collect it
- data = []
-
- for i in range(len(test_data) - sequence_length - 1):
- data.append(test_data[i: i + sequence_length + 1])
- #print(len(data[0][0]),len(data[1]),len(data))
- #1 6 494
- reshaped_data = np.array(data).astype('float64')
- #print("reshaped_data:",reshaped_data.shape)
- #reshaped_data: (494, 6, 1)
-
- #random the order of test_data to improve the robustness
- np.random.shuffle(reshaped_data)
- #from n to n*5 are the training data collected in x, the n*6th is the true value collected in y
- x = reshaped_data[:, :-1]
- y = reshaped_data[:, -1]
-
- #print("x ",x.shape,"\ny ",y.shape)
- #x (494, 5, 1) y (494, 1)
-
- #train data
- train_x = x[: split_boundary]
- train_y = y[: split_boundary]
- #test data
- test_x = x[split_boundary:]
- test_y=y[split_boundary:]
- #print("train_y:",train_x.shape,"train_y:",train_y.shape,"test_x ",test_x.shape,"test_y",test_y.shape)
- #train_y: (350, 5, 1) train_y: (350, 1) test_x (144, 5, 1) test_y (144, 1)
- return train_x, train_y, test_x, test_y
-
- def build_model():
- # input_dim是输入的train_x的最后一个维度,相当于输入的神经只有1个——特征只有1个,train_x的维度为(n_samples, time_steps, input_dim)
- #如果return_sequences=True:返回形如(samples,timesteps,output_dim)的3D张量否则,返回形如(samples,output_dim)的2D张量
- #unit并不是输出的维度,而是门结构(forget门、update门、output门)使用的隐藏单元个数
- model = Sequential()
- #use rmsprop for optimizer
- rmsprop=keras.optimizers.RMSprop(lr=0.001, rho=0.9,epsilon=1e-08,decay=0.0)
- #build one LSTM layer
- model.add(LSTM(input_dim=1, units=1, return_sequences=False,use_bias=True,activation='tanh'))
- #model.add(LSTM(100, return_sequences=False,use_bias=True,activation='tanh'))
-
- #comiple this model
- model.compile(loss='mse', optimizer=rmsprop)#rmsprop
- return model
-
- def train_model(train_x, train_y, test_x, test_y):
- #call function to build model
- model = build_model()
-
- try:
- #store this model to use its loss parameter
- history=model.fit(train_x, train_y, batch_size=20, epochs=train_times,verbose=2)
- #store the loss
- lossof_history=history.history['loss']
-
- predict = model.predict(test_x)
- predict = np.reshape(predict, (predict.size, ))
- #evaluate this model by returning a loss
- loss=model.evaluate(test_x,test_y)
- print("loss is ",loss)
- #if there is a KeyboardInterrupt error, do the following
- except KeyboardInterrupt:
- print("error of predict ",predict)
- print("error of test_y: ",test_y)
-
- try:
- #x1 is the xlabel to print the test value, there are 500 data,30% is for testing
- x1=np.linspace(1,test_y.shape[0],test_y.shape[0])
- #x1 is the xlabel to print the loss value, there are 500 data,70% is for training
- x2=np.linspace(1,train_times,train_times)
- fig = plt.figure(1)
- #print the predicted value and true value
- plt.title("test with rmsprop lr=0.01_")
- plt.plot(x1,predict,'ro-')
- plt.plot(x1,test_y,'go-')
- plt.legend(['predict', 'true'])
- plt.xlabel('times')
- plt.ylabel('propability')
- plt.savefig('pic/train_with_rmsprop_lr=0.01.png')
- #print the loss
- fig2=plt.figure(2)
- plt.title("loss lr=0.01")
- plt.plot(x2,lossof_history)
- plt.savefig('pic/train_with_rmsprop_lr=0.01_LOSS_.png')
- plt.show()
- #if the len(x1) is not equal to predict.shape[0] / test_y.shape[0] / len(x2) is not equal to lossof_history.shape[0],there will be an Exception
- except Exception as e:
- print("error: ",e)
-
- if __name__ == '__main__':
- #random_walk_model() function is only used by once, because data are stored as pic/random_data.csv
- #random_walk_model()
-
- #prepare the right data format for LSTM
- train_x, train_y, test_x, test_y=random_test()
- #standard the format for LSTM input
- test_x = np.reshape(test_x, (test_x.shape[0], test_x.shape[1], 1))
- #print("main: train_x.shape ",train_x.shape)
- #main: train_x.shape (350, 5, 1)
- train_model(train_x, train_y, test_x, test_y)

细节
def random_test(sequence_length=6,split=0.7):
在这个函数当中,将获取的数据处理为需要的三维的张量格式,在训练的时候
history=model.fit(train_x, train_y, batch_size=20, epochs=train_times,verbose=2)
train_x.shape= (415, 6, 1)#600条数据,70%的训练数据,30%测试数据
最后使用的训练数据需要是这样的三维张量。
Question:600条的数据,70%用于训练,那么数据应该是420条,但是为什么是415?
Answer:在预处理数据之后,建立一层的LSTM:
model.add(LSTM(input_dim=1, units=50, return_sequences=False))
后台显示input_dim warning,找了下原因,要使用input_shape作为参数,input_shape为3维,参数为(Batch_size, Time_step, Input_Sizes)。
batch_size设置:batch_size为
在model.add(LSTM(input_shape(,,,), units=, return_sequences=))语句中定义 | 在该语句中不定义batch_size,input_shape=(5,),这只定义了time_step,或者input_shape=(None,5,5),第一个参数定义为None |
无法使用model.train_on_batch(),且在test时也需要有batch_size的数据 | 可以调用train_on_batch() |
time_step为时间序列的长度/语句的最大长度
input_sizes:每个时间点输入x的维度/语句的embedding的向量维度,本例题做概率预测,再次回忆LSTM的图,x(t)输入是一个概率值,那么input_sizes=1,即特征值只有一个
那这与数据415条的关系在哪呢?
注意默认的参数 sequence_length=6
这是数据的一部分:
- '''
- 0.7586717205211277
- 0.6628550358816061
- 0.9184003785782959
- 0.09365662435769384
- 0.9791582266747239
- 0.8700739252039772
- 0.7924134549615585
- 0.3983410609045436
- 0.38988445126231197
- 0.8167186985712294
- 0.879351951255656
- 0.9468282424096985
- 0.7060727836006101
- 0.7650727081508003
- 0.3633755461129521
- 0.3489589275449808
- '''
- for i in range(len(test_data) - sequence_length - 1):
- data.append(test_data[i: i + sequence_length + 1])

在上面的语句作用就是
当i=0时,data.append(test[0:6]),一共循环594次,那么data的数据为
- [[[0.75867172]
- [0.66285504]
- [0.91840038]
- [0.09365662]
- [0.97915823]
- [0.87007393]]
-
- [[0.66285504]
- [0.91840038]
- [0.09365662]
- [0.97915823]
- [0.87007393]
- [0.79241345]]
-
- [[0.91840038]
- [0.09365662]
- [0.97915823]
- [0.87007393]
- [0.79241345]
- [0.39834106]]
-
- ...
- ]

即 其步长为1,生成的data.shape=(594, 6, 1)= (seq_len, batch, input_size)
其中第一个参数表示数据个数,
第二个参数表示,观察dada的数据,步长为1(自己设定的),个数为6,进行划分,batch就是那个6
第三个参数:回忆上面讲的input_shape的input_size——>每个时间点输入x的维度/语句的embedding的向量维度,本例题做概率预测,再次回忆LSTM的图,x(t)输入是一个概率值,那么input_sizes=1,即特征值只有一个
用于测试的30%的数据预测结果与真实结果如下
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。