当前位置:   article > 正文

opencv dnn yolov5 c++

opencv dnn yolov5

yolo.h
#pragma once
#include
#include<opencv2/opencv.hpp>
//#include
//using namespace std;
//using namespace cv;
//using namespace dnn;

struct Output {
int id;//结果类别id
float confidence;//结果置信度
cv::Rect box;//矩形框
};

class Yolo {
public:
Yolo() {
}
~Yolo() {}
bool readModel(cv::dnn::Net& net, std::string& netPath, bool isCuda);
bool Detect(cv::Mat& SrcImg, cv::dnn::Net& net, std::vector& output);
void drawPred(cv::Mat& img, std::vector result, std::vectorcv::Scalar color);

private:
float Sigmoid(float x) {
return static_cast(1.f / (1.f + exp(-x)));
}
const float netAnchors[3][6] = { { 10.0, 13.0, 16.0, 30.0, 33.0, 23.0 },{ 30.0, 61.0, 62.0, 45.0, 59.0, 119.0 },{ 116.0, 90.0, 156.0, 198.0, 373.0, 326.0 } };
const float netStride[3] = { 8, 16.0,32 };
const int netWidth = 640;
const int netHeight = 640;
float nmsThreshold = 0.45;
float boxThreshold = 0.25;
float classThreshold = 0.25;
std::vectorstd::string className = { “call”, “four”, “like”, “ok”, “one”,“no_gesture”};
//std::vectorstd::string className = { “person”, “bicycle”, “car”, “motorcycle”, “airplane”, “bus”, “train”, “truck”, “boat”, “traffic light”,
// “fire hydrant”, “stop sign”, “parking meter”, “bench”, “bird”, “cat”, “dog”, “horse”, “sheep”, “cow”,
// “elephant”, “bear”, “zebra”, “giraffe”, “backpack”, “umbrella”, “handbag”, “tie”, “suitcase”, “frisbee”,
// “skis”, “snowboard”, “sports ball”, “kite”, “baseball bat”, “baseball glove”, “skateboard”, “surfboard”,
// “tennis racket”, “bottle”, “wine glass”, “cup”, “fork”, “knife”, “spoon”, “bowl”, “banana”, “apple”,
// “sandwich”, “orange”, “broccoli”, “carrot”, “hot dog”, “pizza”, “donut”, “cake”, “chair”, “couch”,
// “potted plant”, “bed”, “dining table”, “toilet”, “tv”, “laptop”, “mouse”, “remote”, “keyboard”, “cell phone”,
// “microwave”, “oven”, “toaster”, “sink”, “refrigerator”, “book”, “clock”, “vase”, “scissors”, “teddy bear”,
// “hair drier”, “toothbrush” };

};

yolo.cpp

#include"stdafx.h"
#include"yolo.h";
using namespace std;
using namespace cv;
using namespace dnn;

bool Yolo::readModel(Net& net, string& netPath, bool isCuda = false) {
try {
net = readNet(netPath);
}
catch (const std::exception&) {
return false;
}
//cuda
if (isCuda) {
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16);

}
//cpu
else {

	net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
	net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
return true;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

}
bool Yolo::Detect(Mat& SrcImg, Net& net, vector& output) {
Mat blob;
int col = SrcImg.cols;
int row = SrcImg.rows;
int maxLen = MAX(col, row);
Mat netInputImg = SrcImg.clone();
if (maxLen > 1.2 * col || maxLen > 1.2 * row) {
Mat resizeImg = Mat::zeros(maxLen, maxLen, CV_8UC3);
SrcImg.copyTo(resizeImg(Rect(0, 0, col, row)));
netInputImg = resizeImg;
}
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(104, 117, 123), true, false);
//如果在其他设置没有问题的情况下但是结果偏差很大,可以尝试下用下面两句语句
blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0,0), true, false);
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(114, 114,114), true, false);
net.setInput(blob);
std::vectorcv::Mat netOutputImg;
//vector outputLayerName{“345”,“403”, “461”,“output” };
//net.forward(netOutputImg, outputLayerName[3]); //获取output的输出
net.forward(netOutputImg, net.getUnconnectedOutLayersNames());
std::vector classIds;//结果id数组
std::vector confidences;//结果每个id对应置信度数组
std::vectorcv::Rect boxes;//每个id矩形框
float ratio_h = (float)netInputImg.rows / netHeight;
float ratio_w = (float)netInputImg.cols / netWidth;
int net_width = className.size() + 5; //输出的网络宽度是类别数+5
float* pdata = (float*)netOutputImg[0].data;
for (int stride = 0; stride < 3; stride++) { //stride
int grid_x = (int)(netWidth / netStride[stride]);
int grid_y = (int)(netHeight / netStride[stride]);
for (int anchor = 0; anchor < 3; anchor++) { //anchors
const float anchor_w = netAnchors[stride][anchor * 2];
const float anchor_h = netAnchors[stride][anchor * 2 + 1];
for (int i = 0; i < grid_y; i++) {
for (int j = 0; j < grid_x; j++) {
float box_score = pdata[4]; //Sigmoid(pdata[4]);//获取每一行的box框中含有某个物体的概率
//float s = Sigmoid(pdata[4]);
if (box_score > boxThreshold) {
cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
Point classIdPoint;
double max_class_socre;
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre = (float)max_class_socre; //Sigmoid((float)max_class_socre);
if (max_class_socre > classThreshold) {
//rect [x,y,w,h]
float x = pdata[0];// (Sigmoid(pdata[0]) * 2.f - 0.5f + j) * netStride[stride]; //x //
float y = pdata[1];// (Sigmoid(pdata[1]) * 2.f - 0.5f + i) * netStride[stride]; //y //
float w = pdata[2];// powf(Sigmoid(pdata[2]) * 2.f, 2.f) * anchor_w; //w
float h = pdata[3];//powf(Sigmoid(pdata[3]) * 2.f, 2.f) * anchor_h; //h
int left = (x - 0.5 * w) * ratio_w;
int top = (y - 0.5 * h) * ratio_h;
classIds.push_back(classIdPoint.x);
confidences.push_back(max_class_socre * box_score);
boxes.push_back(Rect(left, top, int(w * ratio_w), int(h * ratio_h)));
}
}
pdata += net_width;//下一行
}
}
}
}

//执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
vector<int> nms_result;
NMSBoxes(boxes, confidences, classThreshold, nmsThreshold, nms_result);
for (int i = 0; i < nms_result.size(); i++) {
	int idx = nms_result[i];
	Output result;
	result.id = classIds[idx];
	result.confidence = confidences[idx];
	result.box = boxes[idx];
	output.push_back(result);
}

if (output.size())
	return true;
else
	return false;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

}

void Yolo::drawPred(Mat& img, vector result, vector color) {
for (int i = 0; i < result.size(); i++) {
int left, top;
left = result[i].box.x;
top = result[i].box.y;
int color_num = i;
rectangle(img, result[i].box, color[result[i].id], 2, 8);

	string label = className[result[i].id] + ":" + to_string(result[i].confidence);

	int baseLine;
	Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
	top = max(top, labelSize.height);
	//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
	putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
}
imshow("1", img);
//imwrite("out.bmp", img);
waitKey();
//destroyAllWindows();
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

}

main.cpp
#include “stdafx.h”
#include “yolo.h”
#include
#include<opencv2//opencv.hpp>
#include<math.h>

using namespace std;
using namespace cv;
using namespace dnn;

int main()
{
string img_path = “1.jpg”;
string model_path = “last.onnx”;
//int num_devices = cv::cuda::getCudaEnabledDeviceCount();
//if (num_devices <= 0) {
//cerr << “There is no cuda.” << endl;
//return -1;
//}
//else {
//cout << num_devices << endl;
//}

Yolo test;
Net net;
if (test.readModel(net, model_path, false)) {
	cout << "read net ok!" << endl;
}
else {
	return -1;
}

//生成随机颜色
vector<Scalar> color;
srand(time(0));
for (int i = 0; i < 80; i++) {
	int b = rand() % 256;
	int g = rand() % 256;
	int r = rand() % 256;
	color.push_back(Scalar(b, g, r));
}
vector<Output> result;
Mat img = imread(img_path);

if (test.Detect(img, net, result)) {
	test.drawPred(img, result, color);

}
else {
	cout << "Detect Failed!" << endl;
}

system("pause");
return 0;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

}

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/901207
推荐阅读
相关标签
  

闽ICP备14008679号