赞
踩
Mediapipe 是谷歌出品的一种开源框架,旨在为开发者提供一种简单而强大的工具,用于实现各种视觉和感知应用程序。它包括一系列预训练的机器学习模型和用于处理多媒体数据的工具,可以用于姿势估计、手部追踪、人脸检测与跟踪、面部标志、对象检测、图片分割和语言检测等任务
Mediapipe 是支持跨平台的,可以部署在手机端(Android, iOS), web, desktop, edge devices, IoT 等各种平台,编程语言也支持C++, Python, Java, Swift, Objective-C, Javascript等
在本文中,我们将通过Python实现 Mediapipe 在姿势估计和手部追踪不同领域的应用
序号 | 部位 | Pose Landmark |
---|---|---|
0 | 鼻子 | PoseLandmark.NOSE |
1 | 左眼(内侧) | PoseLandmark.LEFT_EYE_INNER |
2 | 左眼 | PoseLandmark.LEFT_EYE |
3 | 左眼(外侧) | PoseLandmark.LEFT_EYE_OUTER |
4 | 右眼(内侧) | PoseLandmark.RIGHT_EYE_INNER |
5 | 右眼 | PoseLandmark.RIGHT_EYE |
6 | 右眼(外侧) | PoseLandmark.RIGHT_EYE_OUTER |
7 | 左耳 | PoseLandmark.LEFT_EAR |
8 | 右耳 | PoseLandmark.RIGHT_EAR |
9 | 嘴巴(左侧) | PoseLandmark.MOUTH_LEFT |
10 | 嘴巴(右侧) | PoseLandmark.MOUTH_RIGHT |
11 | 左肩 | PoseLandmark.LEFT_SHOULDER |
12 | 右肩 | PoseLandmark.RIGHT_SHOULDER |
13 | 左肘 | PoseLandmark.LEFT_ELBOW |
14 | 右肘 | PoseLandmark.RIGHT_ELBOW |
15 | 左腕 | PoseLandmark.LEFT_WRIST |
16 | 右腕 | PoseLandmark.RIGHT_WRIST |
17 | 左小指 | PoseLandmark.LEFT_PINKY |
18 | 右小指 | PoseLandmark.RIGHT_PINKY |
19 | 左食指 | PoseLandmark.LEFT_INDEX |
20 | 右食指 | PoseLandmark.RIGHT_INDEX |
21 | 左拇指 | PoseLandmark.LEFT_THUMB |
22 | 右拇指 | PoseLandmark.RIGHT_THUMB |
23 | 左臀 | PoseLandmark.LEFT_HIP |
24 | 右臀 | PoseLandmark.RIGHT_HIP |
25 | 左膝 | PoseLandmark.LEFT_KNEE |
26 | 右膝 | PoseLandmark.RIGHT_KNEE |
27 | 左踝 | PoseLandmark.LEFT_ANKLE |
28 | 右踝 | PoseLandmark.RIGHT_ANKLE |
29 | 左脚跟 | PoseLandmark.LEFT_HEEL |
30 | 右脚跟 | PoseLandmark.RIGHT_HEEL |
31 | 左脚趾 | PoseLandmark.LEFT_FOOT_INDEX |
32 | 右脚趾 | PoseLandmark.RIGHT_FOOT_INDEX |
Mediapipe 提供 solution API 来实现快速检测, 不过这种方式在2023年5月10日停止更新了,不过目前还可以使用,可通过 mediapose.solutions.pose.Pose
来实现,配置参数如下
选项 | 含义 | 值范围 | 默认值 |
---|---|---|---|
static_image_mode | 如果设置为 False,会将输入图像视为视频流。它将尝试检测第一张图像中最突出的人,并在成功检测后进一步定位姿势。在随后的图像中,它只是跟踪这些标记,而不调用另一个检测,直到它失去跟踪,从而减少计算和延迟。如果设置为 True,则人员检测将运行每个输入图像,非常适合处理一批静态(可能不相关的)图像 | Boolean | False |
model_complexity | 模型的复杂度,准确性和推理延迟通常随着模型复杂性的增加而增加 | {0,1,2} | 1 |
smooth_landmarks | 如果设置为 True,则solution 过滤器会在不同的输入图像中设置标记以减少抖动,但如果 static_image_mode 也设置为 True,则忽略该筛选器 | Boolean | True |
enable_segmentation | 如果设置为 True,则除了姿态标记外,还会生成分割蒙版 | Boolean | False |
smooth_segmentation | 如果设置为 True,则会过滤不同输入图像中的分割掩码,以减少抖动。如果enable_segmentation为 false 或 static_image_mode为 True,则忽略 | Boolean | True |
min_detection_confidence | 人员检测模型的最小置信度值 ,用于将检测视为成功 | Float [0.0,1.0] | 0.5 |
min_tracking_confidence | 来自姿态跟踪模型的最小置信度值 , 用于将姿态标记视为成功跟踪,否则将在下一个输入图像上自动调用人员检测。将其设置为更高的值可以提高解决方案的可靠性,但代价是延迟更高。如果static_image_mode为 True,则忽略,其中人员检测仅对每个图像运行。 | Float [0.0,1.0] | 0.5 |
import cv2 import numpy as np import mediapipe as mp def main(): FILE_PATH = 'data/1.png' img = cv2.imread(FILE_PATH) mp_pose = mp.solutions.pose pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5, min_tracking_confidence=0.5) res = pose.process(img) img_copy = img.copy() if res.pose_landmarks is not None: mp_drawing = mp.solutions.drawing_utils # mp_drawing.draw_landmarks( # img_copy, res.pose_landmarks, mp.solutions.pose.POSE_CONNECTIONS) mp_drawing.draw_landmarks( img_copy, res.pose_landmarks, mp_pose.POSE_CONNECTIONS, # frozenset,定义了哪些关键点要连接 mp_drawing.DrawingSpec(color=(255, 255, 255), # 姿态关键点 thickness=2, circle_radius=2), mp_drawing.DrawingSpec(color=(174, 139, 45), # 连线颜色 thickness=2, circle_radius=2), ) cv2.imshow('MediaPipe Pose Estimation', img_copy) cv2.waitKey(0) if __name__ == '__main__': main()
import cv2 import numpy as np import mediapipe as mp def video(): # 读取摄像头 # cap = cv2.VideoCapture(0) # 读取视频 cap = cv2.VideoCapture('data/1.mp4') mp_pose = mp.solutions.pose pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, min_tracking_confidence=0.5) while cap.isOpened(): ret, frame = cap.read() if not ret: break # 摄像头 # continue # 将 BGR 图像转换为 RGB rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 进行姿势估计 results = pose.process(rgb_frame) if results.pose_landmarks is not None: # 绘制关键点和连接线 mp_drawing = mp.solutions.drawing_utils mp_drawing.draw_landmarks( frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) # 显示结果 cv2.imshow('MediaPipe Pose Estimation', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() if __name__ == '__main__': video()
旧版 API 并不能检测多个姿态,新版 API 可以实现多个姿态检测
选项 | 含义 | 值范围 | 默认值 |
---|---|---|---|
running_mode | 设置任务的运行模式,有三种模式可选: IMAGE: 单一照片输入. VIDEO: 视频. LIVE_STREAM: 输入数据(例如来自摄像机)为实时流。在此模式下,必须调用 resultListener 来设置侦听器以异步接收结果. | {IMAGE, VIDEO, LIVE_STREAM } | IMAGE |
num_poses | 姿势检测器可以检测到的最大姿势数 | Integer > 0 | 1 |
min_pose_detection_confidence | 姿势检测被认为是成功的最小置信度得分 | Float [0.0,1.0] | 0.5 |
min_pose_presence_confidence | 姿态检测中的姿态存在分数的最小置信度分数 | Float [0.0,1.0] | 0.5 |
min_tracking_confidence | 姿势跟踪被视为成功的最小置信度分数 | Float [0.0,1.0] | 0.5 |
output_segmentation_masks | 是否为检测到的姿势输出分割掩码 | Boolean | False |
result_callback | 将结果侦听器设置为在Pose Landmark处于LIVE_STREAM 模式时异步接收Landmark结果。仅当运行模式设置为LIVE_STREAM 时才能使用 | ResultListener | N/A |
from mediapipe import solutions from mediapipe.framework.formats import landmark_pb2 import cv2 import numpy as np import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_pose = mp.solutions.pose def draw_landmarks_on_image(rgb_image, detection_result): pose_landmarks_list = detection_result.pose_landmarks annotated_image = np.copy(rgb_image) # Loop through the detected poses to visualize. for idx in range(len(pose_landmarks_list)): pose_landmarks = pose_landmarks_list[idx] # Draw the pose landmarks. pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList() pose_landmarks_proto.landmark.extend([ landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks ]) solutions.drawing_utils.draw_landmarks( annotated_image, pose_landmarks_proto, solutions.pose.POSE_CONNECTIONS, solutions.drawing_styles.get_default_pose_landmarks_style()) return annotated_image def newSolution(): BaseOptions = mp.tasks.BaseOptions PoseLandmarker = mp.tasks.vision.PoseLandmarker PoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptions VisionRunningMode = mp.tasks.vision.RunningMode model_path = 'data/pose_landmarker_heavy.task' options = PoseLandmarkerOptions( base_options=BaseOptions(model_asset_path=model_path), running_mode=VisionRunningMode.IMAGE, num_poses=10) FILE_PATH = 'data/4.jpg' image = cv2.imread(FILE_PATH) img = mp.Image.create_from_file(FILE_PATH) with PoseLandmarker.create_from_options(options) as detector: res = detector.detect(img) image = draw_landmarks_on_image(image, res) cv2.imshow('MediaPipe Pose Estimation', image) cv2.waitKey(0) if __name__ == '__main__': newSolution()
通过计算胳膊弯曲角度来判断状态,并计算俯卧撑个数
import cv2 import mediapipe as mp import numpy as np mp_drawing = mp.solutions.drawing_utils mp_pose = mp.solutions.pose def calculate_angle(a, b, c): radians = np.arctan2(c.y - b.y, c.x - b.x) - \ np.arctan2(a.y - b.y, a.x - b.x) angle = np.abs(np.degrees(radians)) return angle if angle <= 180 else 360 - angle def angle_of_arm(landmarks, shoulder, elbow, wrist): shoulder_coord = landmarks[mp_pose.PoseLandmark[shoulder].value] elbow_coord = landmarks[mp_pose.PoseLandmark[elbow].value] wrist_coord = landmarks[mp_pose.PoseLandmark[wrist].value] return calculate_angle(shoulder_coord, elbow_coord, wrist_coord) def count_push_up(landmarks, counter, status): left_arm_angle = angle_of_arm( landmarks, "LEFT_SHOULDER", "LEFT_ELBOW", "LEFT_WRIST") right_arm_angle = angle_of_arm( landmarks, "RIGHT_SHOULDER", "RIGHT_ELBOW", "RIGHT_WRIST") avg_arm_angle = (left_arm_angle + right_arm_angle) // 2 if status: if avg_arm_angle < 70: counter += 1 status = False else: if avg_arm_angle > 160: status = True return counter, status def main(): cap = cv2.VideoCapture('data/test.mp4') counter = 0 status = False with mp_pose.Pose(min_detection_confidence=0.7, min_tracking_confidence=0.7) as pose: while cap.isOpened(): success, image = cap.read() if not success: print("empty camera") break result = pose.process(image) if result.pose_landmarks: mp_drawing.draw_landmarks( image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) counter, status = count_push_up( result.pose_landmarks.landmark, counter, status) cv2.putText(image, text=str(counter), org=(100, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=4, color=(255, 255, 255), thickness=2, lineType=cv2.LINE_AA) cv2.imshow("push-up counter", image) key = cv2.waitKey(1) if key == ord('q'): break cap.release() if __name__ == '__main__': main()
照片
选项 | 含义 | 值范围 | 默认值 |
---|---|---|---|
static_image_mode | 如果设置为 False,会将输入图像视为视频流。它将尝试在第一个输入图像中检测手,并在成功检测后进一步定位手部标志。在随后的图像中,一旦检测到所有 max_num_hands 手并定位了相应的手部标志,它就会简单地跟踪这些标志,而不会调用其他检测,直到它失去对任何手的跟踪。这减少了延迟,是处理视频帧的理想选择。如果设置为 True,则对每个输入图像运行手动检测,非常适合处理一批静态(可能不相关的)图像 | Boolean | False |
max_num_hands | 要检测的最大手数 | Integer | 2 |
model_complexity | 模型的复杂度,准确性和推理延迟通常随着模型复杂性的增加而增加 | {0,1} | 1 |
min_detection_confidence | 检测模型的最小置信度值 ,用于将检测视为成功 | Float [0.0,1.0] | 0.5 |
min_tracking_confidence | 来自手部跟踪模型的最小置信度值 , 用于将手部标记视为成功跟踪,否则将在下一个输入图像上自动调用检测。将其设置为更高的值可以提高解决方案的可靠性,但代价是延迟更高。如果static_image_mode为 True,则忽略,其中手部检测仅对每个图像运行。 | Float [0.0,1.0] | 0.5 |
import cv2 import mediapipe as mp mp_hands = mp.solutions.hands def main(): cv2.namedWindow("MediaPipe Hand", cv2.WINDOW_NORMAL) hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5) img = cv2.imread('data/finger/1.jpg') rgb_frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 进行手部追踪 results = hands.process(rgb_frame) if results.multi_hand_landmarks: # 绘制手部关键点和连接线 for hand_landmarks in results.multi_hand_landmarks: mp_drawing = mp.solutions.drawing_utils mp_drawing.draw_landmarks( img, hand_landmarks, mp_hands.HAND_CONNECTIONS) # 显示结果 cv2.imshow('MediaPipe Hand', img) cv2.waitKey(0) if __name__ == '__main__': main()
import cv2 import mediapipe as mp mp_hands = mp.solutions.hands def video(): hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.4, min_tracking_confidence=0.4) # 读取视频 cap = cv2.VideoCapture('data/hand.mp4') while cap.isOpened(): ret, frame = cap.read() if not ret: break # 将 BGR 图像转换为 RGB rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 进行手部追踪 results = hands.process(rgb_frame) if results.multi_hand_landmarks: # 绘制手部关键点和连接线 for hand_landmarks in results.multi_hand_landmarks: mp_drawing = mp.solutions.drawing_utils mp_drawing.draw_landmarks( frame, hand_landmarks, mp_hands.HAND_CONNECTIONS) # 显示结果 cv2.imshow('MediaPipe Hand Tracking', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() if __name__ == '__main__': video()
使用 KNN 对手势进行预测
import mediapipe as mp import numpy as np import cv2 from mediapipe.framework.formats.landmark_pb2 import NormalizedLandmarkList from sklearn.neighbors import KNeighborsClassifier mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands # 压缩特征点 class Embedder(object): def __init__(self): self._landmark_names = mp.solutions.hands.HandLandmark def __call__(self, landmarks): # modify the call func can both handle a 3-dim dataset and a single referencing result. if isinstance(landmarks, np.ndarray): if landmarks.ndim == 3: # for dataset embeddings = [] for lmks in landmarks: embedding = self.__call__(lmks) embeddings.append(embedding) return np.array(embeddings) elif landmarks.ndim == 2: # for inference assert landmarks.shape[0] == len(list( self._landmark_names)), 'Unexpected number of landmarks: {}'.format(landmarks.shape[0]) # Normalize landmarks. landmarks = self._normalize_landmarks(landmarks) # Get embedding. embedding = self._get_embedding(landmarks) return embedding else: print('ERROR: Can NOT embedding the data you provided !') else: if isinstance(landmarks, list): # for dataset embeddings = [] for lmks in landmarks: embedding = self.__call__(lmks) embeddings.append(embedding) return np.array(embeddings) elif isinstance(landmarks, NormalizedLandmarkList): # for inference # Normalize landmarks. landmarks = np.array([[lmk.x, lmk.y, lmk.z] for lmk in landmarks.landmark], dtype=np.float32) assert landmarks.shape[0] == len(list( self._landmark_names)), 'Unexpected number of landmarks: {}'.format(landmarks.shape[0]) landmarks = self._normalize_landmarks(landmarks) # Get embedding. embedding = self._get_embedding(landmarks) return embedding else: print('ERROR: Can NOT embedding the data you provided !') def _get_center(self, landmarks): # MIDDLE_FINGER_MCP:9 return landmarks[9] def _get_size(self, landmarks): landmarks = landmarks[:, :2] max_dist = np.max(np.linalg.norm( landmarks - self._get_center(landmarks), axis=1)) return max_dist * 2 def _normalize_landmarks(self, landmarks): landmarks = np.copy(landmarks) # Normalize center = self._get_center(landmarks) size = self._get_size(landmarks) landmarks = (landmarks - center) / size landmarks *= 100 # optional, but makes debugging easier. return landmarks def _get_embedding(self, landmarks): # we can add and delete any embedding features test = np.array([ np.dot((landmarks[2]-landmarks[0]), (landmarks[3]-landmarks[4])), # thumb bent np.dot((landmarks[5]-landmarks[0]), (landmarks[6]-landmarks[7])), np.dot((landmarks[9]-landmarks[0]), (landmarks[10]-landmarks[11])), np.dot((landmarks[13]-landmarks[0]), (landmarks[14]-landmarks[15])), np.dot((landmarks[17]-landmarks[0]), (landmarks[18]-landmarks[19])) ]).flatten() return test def init_knn(file='data/dataset_embedded.npz'): npzfile = np.load(file) X = npzfile['X'] y = npzfile['y'] neigh = KNeighborsClassifier(n_neighbors=5) neigh.fit(X, y) return neigh def hand_pose_recognition(stream_img): # For static images: stream_img = cv2.cvtColor(stream_img, cv2.COLOR_BGR2RGB) embedder = Embedder() neighbors = init_knn() with mp_hands.Hands( static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5) as hands: results = hands.process(stream_img) if not results.multi_hand_landmarks: return ['no_gesture'], stream_img else: annotated_image = stream_img.copy() multi_landmarks = results.multi_hand_landmarks # KNN inference embeddings = embedder(multi_landmarks) hand_class = neighbors.predict(embeddings) # hand_class_prob = neighbors.predict_proba(embeddings) # print(hand_class_prob) for landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks(annotated_image, landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style()) return hand_class, annotated_image # 手势有10种,数字有8种,1-10之间7和9没有,还有两种是OK手势,和蜘蛛侠spide手势 # `eight_sign`, `five_sign`, `four_sign`, `ok`, `one_sign`, `six_sign`, `spider`, `ten_sign`, `three_sign`, `two_sign` def image(): FILE_PATH = 'data/ok.png' img = cv2.imread(FILE_PATH) handclass, img_final = hand_pose_recognition(img) cv2.putText(img_final, text=handclass[0], org=(200, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(255, 255, 255), thickness=2, lineType=cv2.LINE_AA) cv2.imshow('test', cv2.cvtColor(img_final, cv2.COLOR_RGB2BGR)) cv2.waitKey(0) def video(): cap = cv2.VideoCapture('data/ok.mp4') while cap.isOpened(): ret, frame = cap.read() if not ret: break handclass, img_final = hand_pose_recognition(frame) cv2.putText(img_final, text=handclass[0], org=(50, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(255, 0, 0), thickness=2, lineType=cv2.LINE_AA) cv2.imshow('test', cv2.cvtColor(img_final, cv2.COLOR_RGB2BGR)) if cv2.waitKey(1) & 0xFF == ord('q'): break if __name__ == '__main__': video()
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。