当前位置:   article > 正文

在 Python 中使用机器学习进行人体姿势估计

mp.solutions.pose.pose

姿态检测是计算机视觉领域的一个活跃研究领域。你可以从字面上找到数百篇研究论文和几个试图解决姿势检测问题的模型。

之所以有如此多的机器学习爱好者被姿势估计所吸引,是因为它的应用范围很广,而且实用性很强。

在本文中,我们将介绍一种使用机器学习和 Python 中一些非常有用的库进行姿势检测和估计的应用。

什么是姿态估计?

82a1364ec40c170b8ce6a759cead4261.png

姿态估计是一种跟踪人或物体运动的计算机视觉技术。这通常通过查找给定对象的关键点位置来执行。基于这些关键点,我们可以比较各种动作和姿势并得出见解。姿态估计在增强现实、动画、游戏和机器人领域得到了积极的应用。

目前有几种模型可以执行姿态估计。下面给出了一些姿势估计的方法:

  1. Open pose

  2. Pose net

  3. Blaze pose

  4. Deep Pose

  5. Dense pose

  6. Deep cut

选择任何一种模型而不是另一种可能完全取决于应用程序。此外,运行时间、模型大小和易于实现等因素也可能是选择特定模型的各种原因。因此,最好从一开始就了解你的要求并相应地选择模型。

在本文中,我们将使用 Blaze pose检测人体姿势并提取关键点。该模型可以通过一个非常有用的库轻松实现,即众所周知的Media Pipe。

Media Pipe——Media Pipe是一个开源的跨平台框架,用于构建多模型机器学习管道。它可用于实现人脸检测、多手跟踪、头发分割、对象检测和跟踪等前沿模型。

Blaze Pose Detector ——大部分姿态检测依赖于由 17 个关键点组成的 COCO 拓扑结构,而Blaze姿态检测器预测 33 个人体关键点,包括躯干、手臂、腿部和面部。包含更多关键点对于特定领域姿势估计模型的成功应用是必要的,例如手、脸和脚。每个关键点都使用三个自由度以及可见性分数进行预测。Blaze Pose是亚毫秒模型,可用于实时应用,其精度优于大多数现有模型。该模型有两个版本:Blazepose lite 和 Blazepose full,以提供速度和准确性之间的平衡。

Blaze 姿势提供多种应用程序,包括健身和瑜伽追踪器。这些应用程序可以通过使用一个额外的分类器来实现,比如我们将在本文中构建的分类器。

你可以在此处了解有关Blaze Pose Detector的更多信息: https:/

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/906035
推荐阅读
相关标签
  

闽ICP备14008679号