赞
踩
本案例参考课程:百度架构师手把手教深度学习的内容。 主要目的为练习vgg动态图的PaddlePaddle实现。
本案例已经在AISTUDIO共享,链接为:
https://aistudio.baidu.com/aistudio/projectdetail/244766
数据集iChallenge-PM:
数据集图片 iChallenge-PM中既有病理性近视患者的眼底图片,也有非病理性近视患者的图片,命名规则如下:
病理性近视(PM):文件名以P开头
非病理性近视(non-PM):
高度近似(high myopia):文件名以H开头
正常眼睛(normal):文件名以N开头
我们将病理性患者的图片作为正样本,标签为1; 非病理性患者的图片作为负样本,标签为0。从数据集中选取两张图片,通过LeNet提取特征,构建分类器,对正负样本进行分类,并将图片显示出来。
算法:
VGG VGG是当前最流行的CNN模型之一,2014年由Simonyan和Zisserman提出,其命名来源于论文作者所在的实验室Visual Geometry Group。AlexNet模型通过构造多层网络,取得了较好的效果,但是并没有给出深度神经网络设计的方向。VGG通过使用一系列大小为3x3的小尺寸卷积核和pooling层构造深度卷积神经网络,并取得了较好的效果。VGG模型因为结构简单、应用性极强而广受研究者欢迎,尤其是它的网络结构设计方法,为构建深度神经网络提供了方向。
图3 是VGG-16的网络结构示意图,有13层卷积和3层全连接层。VGG网络的设计严格使用3×33\times 33×3的卷积层和池化层来提取特征,并在网络的最后面使用三层全连接层,将最后一层全连接层的输出作为分类的预测。 在VGG中每层卷积将使用ReLU作为激活函数,在全连接层之后添加dropout来抑制过拟合。使用小的卷积核能够有效地减少参数的个数,使得训练和测试变得更加有效。比如使用两层3×33\times 33×3卷积层,可以得到感受野为5的特征图,而比使用5×55 \times 55×5的卷积层需要更少的参数。由于卷积核比较小,可以堆叠更多的卷积层,加深网络的深度,这对于图像分类任务来说是有利的。VGG模型的成功证明了增加网络的深度,可以更好的学习图像中的特征模式。
关键代码:
- import os
- import numpy as np
- import matplotlib.pyplot as plt
- %matplotlib inline
- from PIL import Image
-
- DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
- # 文件名以N开头的是正常眼底图片,以P开头的是病变眼底图片
- file1 = 'N0012.jpg'
- file2 = 'P0095.jpg'
-
- # 读取图片
- img1 = Image.open(os.path.join(DATADIR, file1))
- img1 = np.array(img1)
- img2 = Image.open(os.path.join(DATADIR, file2))
- img2 = np.array(img2)
-
- # 画出读取的图片
- plt.figure(figsize=(16, 8))
- f = plt.subplot(121)
- f.set_title('Normal', fontsize=20)
- plt.imshow(img1)
- f = plt.subplot(122)
- f.set_title('PM', fontsize=20)
- plt.imshow(img2)
- plt.show()
In[3]
-
- # 查看图片形状
- img1.shape, img2.shape
((2056, 2124, 3), (2056, 2124, 3))
In[5]
- #定义数据读取器
- import cv2
- import random
- import numpy as np
-
- # 对读入的图像数据进行预处理
- def transform_img(img):
- # 将图片尺寸缩放道 224x224
- img = cv2.resize(img, (224, 224))
- # 读入的图像数据格式是[H, W, C]
- # 使用转置操作将其变成[C, H, W]
- img = np.transpose(img, (2,0,1))
- img = img.astype('float32')
- # 将数据范围调整到[-1.0, 1.0]之间
- img = img / 255.
- img = img * 2.0 - 1.0
- return img
-
- # 定义训练集数据读取器
- def data_loader(datadir, batch_size=10, mode = 'train'):
- # 将datadir目录下的文件列出来,每条文件都要读入
- filenames = os.listdir(datadir)
- def reader():
- if mode == 'train':
- # 训练时随机打乱数据顺序
- random.shuffle(filenames)
- batch_imgs = []
- batch_labels = []
- for name in filenames:
- filepath = os.path.join(datadir, name)
- img = cv2.imread(filepath)
- img = transform_img(img)
- if name[0] == 'H' or name[0] == 'N':
- # H开头的文件名表示高度近似,N开头的文件名表示正常视力
- # 高度近视和正常视力的样本,都不是病理性的,属于负样本,标签为0
- label = 0
- elif name[0] == 'P':
- # P开头的是病理性近视,属于正样本,标签为1
- label = 1
- else:
- raise('Not excepted file name')
- # 每读取一个样本的数据,就将其放入数据列表中
- batch_imgs.append(img)
- batch_labels.append(label)
- if len(batch_imgs) == batch_size:
- # 当数据列表的长度等于batch_size的时候,
- # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
- imgs_array = np.array(batch_imgs).astype('float32')
- labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
- yield imgs_array, labels_array
- batch_imgs = []
- batch_labels = []
-
- if len(batch_imgs) > 0:
- # 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
- imgs_array = np.array(batch_imgs).astype('float32')
- labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
- yield imgs_array, labels_array
-
- return reader
- # 查看数据形状
- DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
- train_loader = data_loader(DATADIR,
- batch_size=10, mode='train')
- data_reader = train_loader()
- data = next(data_reader)
- data[0].shape, data[1].shape
((10, 3, 224, 224), (10, 1))
In[6]
- !pip install xlrd
-
- import pandas as pd
- df=pd.read_excel('/home/aistudio/work/palm/PALM-Validation-GT/PM_Label_and_Fovea_Location.xlsx')
- df.to_csv('/home/aistudio/work/palm/PALM-Validation-GT/labels.csv',index=False)
- #训练和评估代码
- import os
- import random
- import paddle
- import paddle.fluid as fluid
- import numpy as np
-
- DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
- DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'
- CSVFILE = '/home/aistudio/work/palm/PALM-Validation-GT/labels.csv'
-
- # 定义训练过程
- def train(model):
- with fluid.dygraph.guard():
- print('start training ... ')
- model.train()
- epoch_num = 5
- # 定义优化器
- opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
- # 定义数据读取器,训练数据读取器和验证数据读取器
- train_loader = data_loader(DATADIR, batch_size=10, mode='train')
- valid_loader = valid_data_loader(DATADIR2, CSVFILE)
- for epoch in range(epoch_num):
- for batch_id, data in enumerate(train_loader()):
- x_data, y_data = data
- img = fluid.dygraph.to_variable(x_data)
- label = fluid.dygraph.to_variable(y_data)
- # 运行模型前向计算,得到预测值
- logits = model(img)
- # 进行loss计算
- loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
- avg_loss = fluid.layers.mean(loss)
-
- if batch_id % 10 == 0:
- print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
- # 反向传播,更新权重,清除梯度
- avg_loss.backward()
- opt.minimize(avg_loss)
- model.clear_gradients()
-
- model.eval()
- accuracies = []
- losses = []
- for batch_id, data in enumerate(valid_loader()):
- x_data, y_data = data
- img = fluid.dygraph.to_variable(x_data)
- label = fluid.dygraph.to_variable(y_data)
- # 运行模型前向计算,得到预测值
- logits = model(img)
- # 二分类,sigmoid计算后的结果以0.5为阈值分两个类别
- # 计算sigmoid后的预测概率,进行loss计算
- pred = fluid.layers.sigmoid(logits)
- loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
- # 计算预测概率小于0.5的类别
- pred2 = pred * (-1.0) + 1.0
- # 得到两个类别的预测概率,并沿第一个维度级联
- pred = fluid.layers.concat([pred2, pred], axis=1)
- acc = fluid.layers.accuracy(pred, fluid.layers.cast(label, dtype='int64'))
- accuracies.append(acc.numpy())
- losses.append(loss.numpy())
- print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))
- model.train()
-
- # save params of model
- fluid.save_dygraph(model.state_dict(), 'mnist')
- # save optimizer state
- fluid.save_dygraph(opt.state_dict(), 'mnist')
-
-
- # 定义评估过程
- def evaluation(model, params_file_path):
- with fluid.dygraph.guard():
- print('start evaluation .......')
- #加载模型参数
- model_state_dict, _ = fluid.load_dygraph(params_file_path)
- model.load_dict(model_state_dict)
-
- model.eval()
- eval_loader = load_data('eval')
-
- acc_set = []
- avg_loss_set = []
- for batch_id, data in enumerate(eval_loader()):
- x_data, y_data = data
- img = fluid.dygraph.to_variable(x_data)
- label = fluid.dygraph.to_variable(y_data)
- # 计算预测和精度
- prediction, acc = model(img, label)
- # 计算损失函数值
- loss = fluid.layers.cross_entropy(input=prediction, label=label)
- avg_loss = fluid.layers.mean(loss)
- acc_set.append(float(acc.numpy()))
- avg_loss_set.append(float(avg_loss.numpy()))
- # 求平均精度
- acc_val_mean = np.array(acc_set).mean()
- avg_loss_val_mean = np.array(avg_loss_set).mean()
-
- print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
In[8]
- # -*- coding:utf-8 -*-
-
- # VGG模型代码
- import numpy as np
- import paddle
- import paddle.fluid as fluid
- from paddle.fluid.layer_helper import LayerHelper
- from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
- from paddle.fluid.dygraph.base import to_variable
-
- # 定义vgg块,包含多层卷积和1层2x2的最大池化层
- class vgg_block(fluid.dygraph.Layer):
- def __init__(self, name_scope, num_convs, num_channels):
- """
- num_convs, 卷积层的数目
- num_channels, 卷积层的输出通道数,在同一个Incepition块内,卷积层输出通道数是一样的
- """
- super(vgg_block, self).__init__(name_scope)
- self.conv_list = []
- for i in range(num_convs):
- conv_layer = self.add_sublayer('conv_' + str(i), Conv2D(self.full_name(),
- num_filters=num_channels, filter_size=3, padding=1, act='relu'))
- self.conv_list.append(conv_layer)
- self.pool = Pool2D(self.full_name(), pool_stride=2, pool_size = 2, pool_type='max')
- def forward(self, x):
- for item in self.conv_list:
- x = item(x)
- return self.pool(x)
-
- class VGG(fluid.dygraph.Layer):
- def __init__(self, name_scope, conv_arch=((2, 64),
- (2, 128), (3, 256), (3, 512), (3, 512))):
- super(VGG, self).__init__(name_scope)
- self.vgg_blocks=[]
- iter_id = 0
- # 添加vgg_block
- # 这里一共5个vgg_block,每个block里面的卷积层数目和输出通道数由conv_arch指定
- for (num_convs, num_channels) in conv_arch:
- block = self.add_sublayer('block_' + str(iter_id),
- vgg_block(self.full_name(), num_convs, num_channels))
- self.vgg_blocks.append(block)
- iter_id += 1
- self.fc1 = FC(self.full_name(),
- size=4096,
- act='relu')
- self.drop1_ratio = 0.5
- self.fc2= FC(self.full_name(),
- size=4096,
- act='relu')
- self.drop2_ratio = 0.5
- self.fc3 = FC(self.full_name(),
- size=1,
- )
- def forward(self, x):
- for item in self.vgg_blocks:
- x = item(x)
- x = fluid.layers.dropout(self.fc1(x), self.drop1_ratio)
- x = fluid.layers.dropout(self.fc2(x), self.drop2_ratio)
- x = self.fc3(x)
- return x
- with fluid.dygraph.guard():
- model = VGG("VGG")
-
- train(model)
start training ... epoch: 0, batch_id: 0, loss is: [0.7242754] epoch: 0, batch_id: 10, loss is: [0.6634571] epoch: 0, batch_id: 20, loss is: [0.7898234] epoch: 0, batch_id: 30, loss is: [0.60537547] [validation] accuracy/loss: 0.9424999952316284/0.35623037815093994 epoch: 1, batch_id: 0, loss is: [0.31599292] epoch: 1, batch_id: 10, loss is: [0.1198744] epoch: 1, batch_id: 20, loss is: [0.46862125] epoch: 1, batch_id: 30, loss is: [0.2300901] [validation] accuracy/loss: 0.92249995470047/0.2342415601015091 epoch: 2, batch_id: 0, loss is: [0.22039299] epoch: 2, batch_id: 10, loss is: [0.65977865] epoch: 2, batch_id: 20, loss is: [0.37409317] epoch: 2, batch_id: 30, loss is: [0.1841044] [validation] accuracy/loss: 0.9325000643730164/0.22097690403461456 epoch: 3, batch_id: 0, loss is: [0.4992897] epoch: 3, batch_id: 10, loss is: [0.31177607] epoch: 3, batch_id: 20, loss is: [0.1721839] epoch: 3, batch_id: 30, loss is: [0.38319916] [validation] accuracy/loss: 0.9199999570846558/0.20679759979248047 epoch: 4, batch_id: 0, loss is: [0.20610766] epoch: 4, batch_id: 10, loss is: [0.06688808] epoch: 4, batch_id: 20, loss is: [0.3352648] epoch: 4, batch_id: 30, loss is: [0.28062168] [validation] accuracy/loss: 0.9149999618530273/0.21788272261619568
- with fluid.dygraph.guard():
- model = VGG("VGG")
-
- train(model)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。