赞
踩
TensorRT模型部署可查看:Windows 下 YOLOv8 使用 TensorRT 进行模型加速部署
YOLOv8 出来一段时间了,继承了分类、检测、分割,本文主要实现自定义的数据集,使用 YOLOV8 进行检测模型的训练和使用
YOLOv8 此次将所有的配置参数全部解耦到配置文件 default.yaml
,不再类似于 YOLOv5,一部分在配置文件,一部分在 train.py
中
windows11 和 Ubuntu20.04(建议使用 Linux 系统)
首先切换到自己建立的虚拟环境安装 pytorch
torch 1.12.0+cu116(根据自身设备而定)
torchvision 0.13.0+cu116(根据自身设备而定)
安装完成后,使用 git 命令将源码克隆下来
git clone https://github.com/ultralytics/ultralytics.git
参照官网,直接使用以下语句即可导入项目所需要的库
pip install ultralytics
根据官方的解释,pip 的 ultralytics
库包含了 requirements.txt
中的所有库
我自己准备了一批 熊猫、老虎的图片作为实验数据集,文件夹命名为 data
(文件路径:/home/mango/ultralytics/data
),对数据集进行划分后的文件夹整体目录结构如下
images
下包含 train、val
文件夹,这两个文件夹下包含此次需要的 图片信息
labels
下包含 train、val
文件夹,这两个文件夹下包含此次需要的 对应图片的标注信息
test_images
下包含的是提供测试的数据集
ps:数据集形式共有3种,可根据自己实际情况采用
1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
首先在 data
文件夹下新建一个数据加载配置文件 animal.yaml
train: /home/mango/ultralytics/data//images/train
val: /home/mango/ultralytics/data/images/val
# number of classes
nc: 2
# class names
names: ['panda', 'tiger']
接下来就可以准备开始训练了
打开终端,进入虚拟环境,进入yolov8的文件夹,
考虑到命令行模式下下载模型可能有点慢,所以先在官方仓库下载好模型,并放入新建的 weights
(文件路径:/home/mango/ultralytics/weights
)目录下
YOLOv8模型仓库
参数很多,建议查看 官方文档
下面是yolov8官方给定的命令行训练/预测/验证/导出方式:
yolo task=detect mode=train model=yolov8n.pt args...
classify predict yolov8n-cls.yaml args...
segment val yolov8n-seg.yaml args...
export yolov8n.pt format=onnx args...
最后输入以下命令即可开始训练(参数很多可以修改,建议查看 官方文档,或者查看/home/mango/ultralytics/ultralytics/yolo/cfg
下的 default.yaml
文件)
yolo task=detect mode=train model=weights/yolov8n.pt data=data/animal.yaml batch=16 epochs=50 imgsz=640 workers=16 device=0
可以看到已经成功开始训练,运行生成的权重、混淆矩阵等信息存在于/home/mango/ultralytics/runs
下面
可以新建一个配置文件,例如:demo.yaml
,参数配置内容从 /home/mango/ultralytics/ultralytics/yolo/cfg/default.yaml
复制即可
或者使用命令行
yolo copy-cfg
它会自动生成一个 default_copy.yaml
(目录地址:/home/mango/ultralytics/default_copy.yaml
)
截取的部分参数信息如下:
# Ultralytics YOLO 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/93779
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。