赞
踩
然而,像素级或物体级的变化检测方法不适用于土地利用变化分析。造成这种情况的主要原因可能是,场景中的物体,如植被生长和个别建筑的拆除/建造,不会直接影响土地使用类别,即它们在场景中的变化不会改变土地利用类别,例如,从住宅区到工业区。因此,在场景尺度上改进变化检测方法至关重要。
基于对象的方法以对象而不是像素作为分析单元。对象是一组局部像素簇,其中所有像素都被分配了相同的分类标签。一种基于对象的方法有效地利用了图像中的同质信息,并消除了图像噪声、边界[168]和错位的影响。由于基于对象的方法可能带来的好处,它们在土地覆盖图绘制中很普遍。在各种出版物中,它们取得了比基于像素的方法更好的性能。
边界框候选方法。在该方法中,将变化对象作为对象检测(OD)的目标。通常的OD方法,如SSD[169]、Faster R-CNN[170]和YOLO1-5[171-175],有可能用于变化检测。
该方法以遥感图像中的“变化区域”为检测目标,以“不变区域”为背景。OD方法应用于高分辨率遥感图像变化检测[176]。检测结果是一组正方形区域,然后混合具有特定变化类型的相交区域。特征提取网络可以是单分支网络或双分支网络。对于单分支网络,首先合并或减去多时相图像,然后将结果输入OD网络以确定变化[176]。双分支网络分别生成每个图像的基本特征和代表性特征,然后融合每个分支的特征[177]或建议区域[178],以预测类别得分和差异置信度。此外,基于对象的实例分割,例如使用Mask R-CNN,可以用作检测变化的基础,从而产生初始化的对象实例[179]。事实上,获取对象的位置是确定更改对象的位置的第一步。
传统的CD方法可以根据分析单元分为两组:基于像素的CD(PBCD)和基于对象的CD(OBCD)。
基于人工智能的变化检测框架通常包括特征提取器或分类器,这需要有监督和无监督的训练。由于获得大量标记样本进行监督训练通常耗时耗力,因此已经做出了许多努力,以无监督或半监督的方式实现基于人工智能的变化检测。
参考文献:
图像配准就是找到一幅图像像素到另一幅图像像素间的空间映射关系。
这些图像可以是不同时间(多时间配准),不同传感器在不同地方拍摄(多模式配准)。这些图像之间的空间关系可以是刚性(rigid)(平移和旋转),仿射(affine)(例如剪切),单应性(homographies)或复杂的大变形模型(complex large deformations models)。
图像配准所属现代词,指的是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程。
配准技术的流程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数:最后由坐标变换参数进行图像配准。其中特征点提取是关键。
几个容易混淆的概念:
自21世纪初以来,图像配准主要使用基于特征的方法。这些方法有三个步骤:关键点检测和特征描述,特征匹配,图像变换。简单的说,我们选择两个图像中的感兴趣点,将参考图像(reference image)与感测图像(sensed image)中的等价感兴趣点进行关联,然后变换感测图像使两个图像对齐。
关键点检测和特征描述
关键点就是感兴趣点,它表示图像中重要或独特的内容(边角,边缘等)。每个关键点由描述符表示,关键点基本特征的特征向量。描述符应该对图像变换(定位,缩放,亮度等)具有鲁棒性。
特征匹配
一旦在一对图像中识别出关键点,我们就需要将两个图像中对应的关键点进行关联或“匹配”。其中一种方法是BFMatcher.knnMatch()。这个方法计算每对关键点之间的描述符的距离,并返回每个关键点的k个最佳匹配中的最小距离。
图像变换
在匹配至少四对关键点之后,我们就可以将一个图像转换为另一个图像,称为图像变换^12(image warping)。空间中相同平面的两个图像通过单应性变换^13(Homographies)进行关联。Homographies是具有8个自由参数的几何变换,由3x3矩阵表示图像的整体变换(与局部变换相反)。因此,为了获得变换后的感测图像,需要计算Homographies矩阵。
为了得到最佳的变换,我们需要使用RANSAC算法检测异常值并去除。它内置在OpenCV的findHomography方法中。
image-registration-resources(图像配准相关的书籍、论文、源码、工具、竞赛)
A Toolbox for Image Feature Matching and Evaluations(In this repository, we provide easy interfaces for several exisiting SotA methods to match image feature correspondences between image pairs. )
voxelmorph: Learning-Based Image Registration (voxelmorph is a general purpose library for learning-based tools for alignment/registration, and more generally modelling with deformations.)
综述:A review of multimodal image matching: Methods and applications
awesome-remote-sensing-change-detection(数据集、源码、竞赛)
Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges(综述论文的github链接,有截止2021年的大量相关论文、源码、数据集)
Python library with Neural Networks for Change Detection based on PyTorch
该库在gitcode上的映射
该库的blog:Github复现之遥感影像变化检测框架
Change Detection Repository
In this repository, we provide python implementation of some traditional change detection methods, such as SFA, MAD, some deep learning-based change detection methods, such as SiamCRNN, DSFA, and FCN-based methods, or their original websites. Some multi-temporal datasets are also contained in this repository
综述1:2018-多时相遥感影像变化检测方法综述(武大)
------武汉大学眭海刚教授等:多时相遥感影像变化检测方法综述
综述2:Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges
收录于:Remote Sens. 2020
论文地址:Remote Sensing | Free Full-Text | Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges
解读:
变化检测综述:Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges_naath的博客-CSDN博客_变化检测发展历程
Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges(综述论文的github链接,有截止2021年的大量相关论文、源码、数据集)
综述3:Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis
收录于:IEEE Access,2020
综述4:A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images 2022
综述5:A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images 2022
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。