赞
踩
基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速
通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map
方法传入,实现对指定数据列的处理。
mindspore.dataset
提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset
mindspore.dataset.transforms
模块支持一系列通用Transforms。这里我们以Compose
为例,介绍其使用方式。
Compose
接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。
# Download data from open datasets
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
train_dataset = MnistDataset('MNIST_Data/train')
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)
file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:01<00:00, 9.61MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
(28, 28, 1)
composed = transforms.Compose(
[
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
)
train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
(1, 28, 28)
更多通用Transforms详见mindspore.dataset.transforms。
mindspore.dataset.vision
模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了Rescale
、Normalize
和HWC2CHW
变换。下面对其进行详述。
Rescale
变换用于调整图像像素值的大小,包括两个参数:
图像的每个像素将根据这两个参数进行调整,输出的像素值为 o u t p u t i = i n p u t i ∗ r e s c a l e + s h i f t output_{i} = input_{i} * rescale + shift outputi=inputi∗rescale+shift。
这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。
random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)
[[200 201 145 ... 43 116 224]
[243 185 25 ... 132 43 159]
[198 91 172 ... 214 124 232]
...
[232 71 235 ... 106 199 187]
[ 62 48 6 ... 144 184 35]
[ 97 158 225 ... 58 44 102]]
为了更直观地呈现Transform前后的数据对比,我们使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。
rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)
[[0.7843138 0.78823537 0.5686275 ... 0.16862746 0.454902 0.87843144]
[0.95294124 0.7254902 0.09803922 ... 0.5176471 0.16862746 0.62352943]
[0.77647066 0.35686275 0.6745098 ... 0.83921576 0.48627454 0.909804 ]
...
[0.909804 0.2784314 0.9215687 ... 0.4156863 0.7803922 0.73333335]
[0.24313727 0.18823531 0.02352941 ... 0.5647059 0.72156864 0.13725491]
[0.3803922 0.61960787 0.882353 ... 0.227451 0.17254902 0.40000004]]
可以看到,使用Rescale
后的每个像素值都进行了缩放。
Normalize变换用于对输入图像的归一化,包括三个参数:
图像的每个通道将根据mean
和std
进行调整,计算公式为
o
u
t
p
u
t
c
=
i
n
p
u
t
c
−
m
e
a
n
c
s
t
d
c
output_{c} = \frac{input_{c} - mean_{c}}{std_{c}}
outputc=stdcinputc−meanc,其中
c
c
c代表通道索引。
normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)
[[ 2.121434 2.1341622 1.4213811 ... 0.12310111 1.0522623
2.4269116 ]
[ 2.6687481 1.9305104 -0.10600709 ... 1.2559141 0.12310111
1.5995764 ]
[ 2.0959775 0.73405635 1.7650434 ... 2.2996294 1.1540881
2.5287375 ]
...
[ 2.5287375 0.47949168 2.5669222 ... 0.92498 2.1087058
1.9559668 ]
[ 0.36493757 0.18674232 -0.34784356 ... 1.4086528 1.9177822
0.02127524]
[ 0.8104258 1.5868481 2.4396398 ... 0.31402466 0.13582934
0.87406707]]
HWC2CHW
变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CHW格式需求时,可使用该变换进行处理。
这里我们先将前文中normalized_image
处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。
hwc_image = np.expand_dims(normalized_image, -1)
hwc2chw = vision.HWC2CHW()
chw_image = hwc2chw(hwc_image)
print(hwc_image.shape, chw_image.shape)
(48, 48, 1) (1, 48, 48)
更多Vision Transforms详见mindspore.dataset.vision。
mindspore.dataset.text
模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。
首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset
进行加载。
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')
分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的PythonTokenizer
举例,此Tokenizer允许用户自由实现分词策略。随后我们利用map
操作将此分词器应用到输入的文本中,对其进行分词。
def my_tokenizer(content):
return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))
[Tensor(shape=[3], dtype=String, value= ['Welcome', 'to', 'Beijing'])]
Lookup
为词表映射变换,用来将Token转换为Index。在使用Lookup
前,需要构造词表,一般可以加载已有的词表,或使用Vocab
生成词表。这里我们选择使用Vocab.from_dataset
方法从数据集中生成词表。
vocab = text.Vocab.from_dataset(test_dataset)
获得词表后我们可以使用vocab
方法查看词表。
print(vocab.vocab())
{'to': 2, 'Welcome': 1, 'Beijing': 0}
生成词表后,可以配合map
方法进行词表映射变换,将Token转为Index。
test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
[Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]
更多Text Transforms详见mindspore.dataset.text。
Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:
test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 2)], [Tensor(shape=[], dtype=Int64, value= 4)], [Tensor(shape=[], dtype=Int64, value= 6)]]
可以看到map
传入Lambda函数后,迭代获得数据进行了乘2操作。
我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:
def func(x):
return x * x + 2
test_dataset = test_dataset.map(lambda x: func(x))
print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 6)], [Tensor(shape=[], dtype=Int64, value= 18)], [Tensor(shape=[], dtype=Int64, value= 38)]]
import time
print(time.strftime('%Y-%m-%d %H-%M-%S',time.localtime(time.time())),'cftang007')
2024-08-06 03-03-24 cftang007
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。