赞
踩
在 Data Sets for Deep Learning 给出了MATLAB中用于深度学习的数据集合介绍以及下载方法。
这是一个10000个灰度合成数字姿态的数字集合。类似于MNIST,但它是合成的。
问题来了,这些数字是如何被合成的?在哪儿可以下载到原始的数据集合呢?
数量
:10000
尺寸
:28×28
色彩
:灰度图片
▲ 图1.1.1 MATLAB Digits Dataset
该集合包括有70,000个图片,分为60,000训练集合以及10,000个测试集合。
数量
:70,000
色彩
:灰度图片
尺寸
:28×28
▲ 图1.2.1 MNIST代表数字
Omniglot数据集合包含有50个字母表,保安有30个训练集合,20个测试集合。 每个字符包含有一定数量EZif是, Ojibwe编号:14(这是加拿大欧土著音节字符), Tifinagh:编号55。每个字符有20个手写字体。
▲ 图1.3.1 Omniglot字符数据集合
这是一个3670个花朵图片数据集合,分为五大类:Daisy(黛西), Dandelion(蒲公英), Roses(玫瑰花), Sunflowers(向日葵), Tulips(郁金香)。
数量
:3670
色彩
:彩色
种类
:5类
文件大小
:218MB
▲ 图1.4.1 Flowers数据集合
数量
:978
色彩
:彩色
种类
:9类:Caesar_Salad, Caprese_salard, French_fires, Greek_salard, Hamburger, Hot_dog, Pizza, Sashimi, Suhi.
数据文件
:77MB
▲ 图1.5.1 食物图片
数量
:60,000
色彩
:彩色
尺寸
:32×32
种类
:10个类别:Airplane,Automobile,Bird,Car,Deer,Dog,Frog,Horse,Ship,Truck
每个类别
:6000
▲ 图1.6.1 Cifar10图片
这个数据集合包括有5类Mathworks公司相关的零售商品。
数量
:不详
种类
:5类:Cap, Cube, Playing Cards, Torch
尺寸
:227×227
色彩
:彩色
▲ 图1.7.1 Mathworks 零售商品图片集
CamVid 数据集合是一组街景图品集合,从小轿车内部拍摄。用于训练网络对图片进行语义分割。改数据集合提供了32类像素级别语义标注。包括:轿车,行人,道路等。
数量
:不详
尺寸
:720×960
色彩
:彩色
文件大小
:573MB
▲ 图1.8.1 CamVid 街景图片数据集合
Vehicle数据集合包括有295个图片,其中包含有1到2个车龄。适合于YOLO-v2的图像定位训练,但如果要达到实际应用,还需要更多的标注图片。
数量
:295
色彩
:彩色
尺寸
:720×960
这个数据集合包括有四旋翼无人机在纽约 Hamlin Beach 州立公园拍摄的图片。包括有18种物品标注:道路标志,树木,建筑物。
文件大小
:3GB
色彩
:彩色
种类
:18种类
▲ 图1.10.1 RIT-18数据集合
BarTS数据集合包含有脑肿瘤(神经胶质瘤 Glioms)这是主要脑部病变。
数量
:740
维度
:4D
尺寸
:240×240×155×4
文件大小
:7GB
▲ 图1.11.1 脑部肿瘤数据库
▲ 图2.1.1 Camelyon16
▲ 图2.2.1 Low Dose CTGrand Challenge
▲ 图2.3.1 COCO:Common Objects in Context
▲ 图2.4.1 IAPRTC-12
▲ 图2.5.1 Zuirch RAW to RGB
▲ 图2.6.1 See-In-The-Dark
▲ 图2.7.1 LIVE in the Wild
▲ 图2.8.1 Conrete Crake Image for Classifiction
本文总结了部分MATLAB中用于深度学习的数据集合。
■ 相关文献链接:
● 相关图表链接:
[1] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-Level Concept Learning through Probabilistic Program Induction.” Science 350, no. 6266 (December 11, 2015): 1332–38. https://doi.org/10.1126/science.aab3050.
[2] The TensorFlow Team. “Flowers” https://www.tensorflow.org/datasets/catalog/tf_flowers.
[3] Kat, Tulips, image, https://www.flickr.com/photos/swimparallel/3455026124.Creative Commons License (CC BY).
[4] Rob Bertholf, Sunflowers, image, https://www.flickr.com/photos/robbertholf/20777358950.Creative Commons 2.0 Generic License.
[5] Parvin, Roses, image, https://www.flickr.com/photos/55948751@N00.Creative Commons 2.0 Generic License.
[6] John Haslam, Dandelions, image, https://www.flickr.com/photos/foxypar4/645330051.Creative Commons 2.0 Generic License.
[7] Krizhevsky, Alex. “Learning Multiple Layers of Features from Tiny Images.” MSc thesis, University of Toronto, 2009. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
[8] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January 2009): 88–97. https://doi.org/10.1016/j.patrec.2008.04.005.
[9] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. “High-Resolution Multispectral Dataset for Semantic Segmentation.” ArXiv:1703.01918 [Cs], March 6, 2017. https://arxiv.org/abs/1703.01918.
[10] Isensee, Fabian, Philipp Kickingereder, Wolfgang Wick, Martin Bendszus, and Klaus H. Maier-Hein. “Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge.” In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, edited by Alessandro Crimi, Spyridon Bakas, Hugo Kuijf, Bjoern Menze, and Mauricio Reyes, 10670: 287–97. Cham, Switzerland: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-75238-9_25.
[11] Ehteshami Bejnordi, Babak, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.” JAMA 318, no. 22 (December 12, 2017): 2199. https://doi.org/10.1001/jama.2017.14585.
[12] McCollough, C.H., Chen, B., Holmes, D., III, Duan, X., Yu, Z., Yu, L., Leng, S., Fletcher, J. (2020). Data from Low Dose CT Image and Projection Data [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/9npb-2637.
[13] Grants EB017095 and EB017185 (Cynthia McCollough, PI) from the National Institute of Biomedical Imaging and Bioengineering.
[14] Grubinger, Michael, Paul Clough, Henning Müller, and Thomas Deselaers. “The IAPR TC-12 Benchmark: A New Evaluation Resource for Visual Information Systems.” Proceedings of the OntoImage 2006 Language Resources For Content-Based Image Retrieval. Genoa, Italy. Vol. 5, May 2006, p. 10.
[15] Ignatov, Andrey, Luc Van Gool, and Radu Timofte. “Replacing Mobile Camera ISP with a Single Deep Learning Model.” ArXiv:2002.05509 [Cs, Eess], February 13, 2020. https://arxiv.org/abs/2002.05509.Project Website.
[16] Chen, Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. “Learning to See in the Dark.” ArXiv:1805.01934 [Cs], May 4, 2018. https://arxiv.org/abs/1805.01934.
[17] LIVE: Laboratory for Image and Video Engineering. https://live.ece.utexas.edu/research/ChallengeDB/index.html.
[18] Liznerski, Philipp, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Marius Kloft, and Klaus-Robert Müller. “Explainable Deep One-Class Classification.” ArXiv:2007.01760 [Cs, Stat], March 18, 2021. http://arxiv.org/abs/2007.01760.
[19] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–11. https://doi.org/10.1016/S0167-8655(99)00077-X.
[20] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. Japanese Vowels Data Set. Distributed by UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels
[21] Saxena, Abhinav, Kai Goebel. “Turbofan Engine Degradation Simulation Data Set.” NASA Ames Prognostics Data Repository https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/,NASA Ames Research Center, Moffett Field, CA.
[22] Rieth, Cory A., Ben D. Amsel, Randy Tran, and Maia B. Cook. “Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation.” Harvard Dataverse, Version 1, 2017. https://doi.org/10.7910/DVN/6C3JR1.
[23] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. “PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals.” Circulation 101, No. 23, 2000, pp. e215–e220. https://circ.ahajournals.org/content/101/23/e215.full.
[24] Laguna, Pablo, Roger G. Mark, Ary L. Goldberger, and George B. Moody. “A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG.” Computers in Cardiology 24, 1997, pp. 673–676.
[25] Warden, Pete. “Speech Commands: A public dataset for single-word speech recognition”, 2017. Available from http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed under the Creative Commons Attribution 4.0 license, available here: https://creativecommons.org/licenses/by/4.0/legalcode.
[26] Burkhardt, Felix, Astrid Paeschke, Melissa A. Rolfes, Walter F. Sendlmeier, and Benjamin Weiss. “A Database of German Emotional Speech.” Proceedings of Interspeech 2005. Lisbon, Portugal: International Speech Communication Association, 2005.
[27] Mesaros, Annamaria, Toni Heittola, and Tuomas Virtanen. “Acoustic scene classification: an overview of DCASE 2017 challenge entries.” In 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), pp. 411-415. IEEE, 2018.
[28] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。