当前位置:   article > 正文

Codeforces Global Round 12 E. Capitalism 差分约束_codeforce 差分约束

codeforce 差分约束

传送门

题意:
在这里插入图片描述
思路: 一开始被题意迷惑了,没看出来差分约束,老菜鸡啦。首先看到 a j = a i + 1 a_j=a_i+1 aj=ai+1可以把 a i a_i ai分成奇偶,让后这个图就变成一个二分图了。再考虑如何连边:
(1) 对于 b = 1 b=1 b=1的情况, a j = a i + 1 a_j=a_i+1 aj=ai+1,转化成不等式就是 a i < = a j − 1 a_i<=a_j-1 ai<=aj1 a j < = a i + 1 a_j<=a_i+1 aj<=ai+1,所以建图方式为 ( j , i , − 1 ) (j,i,-1) (j,i,1) ( i , j , 1 ) (i,j,1) (i,j,1)
(2) 对于 b = 0 b=0 b=0的情况, ∣ a i − a j ∣ = 1 |a_i-a_j|=1 aiaj=1,去掉不等式又可以分成两种情况:
① ① a j = a i + 1 a_j=a_i+1 aj=ai+1 连边方式跟上面一样
② ② a i = a j + 1 a_i=a_j+1 ai=aj+1,转化成不等式 a i < = a j + 1 a_i<=a_j+1 ai<=aj+1 a j < = a i − 1 a_j<=a_i-1 aj<=ai1,连边为 ( j , i , 1 ) (j,i,1) (j,i,1) ( i , j , − 1 ) (i,j,-1) (i,j,1)
可以发现第二种情况有四条边,即 ( i , j , 1 ) , ( i , j , − 1 ) , ( j , i , 1 ) , ( j , i , − 1 ) (i,j,1) ,(i,j,-1),(j,i,1),(j,i,-1) (i,j,1),(i,j,1),(j,i,1),(j,i,1)。但是对于 ( i , j , 1 ) (i,j,1) (i,j,1)转化成不等式 j − i < = 1 j-i<=1 ji<=1,把 ( i , j , − 1 ) (i,j,-1) (i,j,1)转成不等式 j − i < = − 1 j-i<=-1 ji<=1,当第一个成立的时候,第二个显然成立,所以只保留第一个就行啦。
让后跑差分约束就好啦, n n n比较小,直接 f l o y d floyd floyd跑顺便判断一下负环就好啦。
这里用并查集判断的二分图。

//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=310,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n,m;
int g[N][N],p[N*2];

int find(int x) { return x==p[x]? x:p[x]=find(p[x]); }

bool check()
{
    for(int i=1;i<=n;i++) if(find(i)==find(i+n)) return true;
    return false;
}

bool floyd()
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
            if(g[i][i]<0) return true;
        }
    return false;
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

    scanf("%d%d",&n,&m);
    for(int i=1;i<=n*2;i++) p[i]=i;
    memset(g,0x3f,sizeof(g));
    for(int i=1;i<=n;i++) g[i][i]=0;
    for(int i=1;i<=m;i++)
    {
        int a,b,op; scanf("%d%d%d",&a,&b,&op);
        g[a][b]=1; g[b][a]=-1;
        if(!op) g[b][a]=1;
        p[find(a)]=find(b+n);
        p[find(a+n)]=find(b);
    }
    if(check()||floyd()) { puts("NO"); return 0; }
    int ans=-1,id=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
            if(g[i][j]>ans) ans=g[i][j],id=i;
    }
    puts("YES");
    printf("%d\n",ans);
    for(int i=1;i<=n;i++) printf("%d ",g[id][i]);



	return 0;
}
/*

*/



  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/代码探险家/article/detail/1004039
推荐阅读
相关标签
  

闽ICP备14008679号