赞
踩
说明:本内容整理自尚硅谷B站MySQL视频>>尚硅谷B站MySQL视频
都有哪些维度可以进行数据库调优?简言之:
关于数据库调优的知识点非常分散。不同的DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相同。这里分为三个章节进行细致讲解。
虽然SQL查询优化的技术有很多,但是大方向上完全可以分成物理查询优化和逻辑查询优化两大块:
学员表 插 50万 条, 班级表 插 1万条
步骤1:建表
CREATE TABLE `class` ( `id` INT(11) NOT NULL AUTO_INCREMENT, `className` VARCHAR(30) DEFAULT NULL, `address` VARCHAR(40) DEFAULT NULL, `monitor` INT NULL , PRIMARY KEY (`id`) ) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8; CREATE TABLE `student` ( `id` INT(11) NOT NULL AUTO_INCREMENT, `stuno` INT NOT NULL , `name` VARCHAR(20) DEFAULT NULL, `age` INT(3) DEFAULT NULL, `classId` INT(11) DEFAULT NULL, PRIMARY KEY (`id`) #CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`) ) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
步骤2:设置参数
命令开启:允许创建函数设置:
#让数据库服务器信任函数的创建,否则会报错
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效
步骤3:创建函数
保证每条数据都不同
#随机产生字符串 DELIMITER // CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255) BEGIN DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ'; DECLARE return_str VARCHAR(255) DEFAULT ''; DECLARE i INT DEFAULT 0; WHILE i < n DO SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1)); SET i = i + 1; END WHILE; RETURN return_str; END // DELIMITER ; #假如要删除 #drop function rand_string;
随机产生班级编号
#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
DECLARE i INT DEFAULT 0;
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
RETURN i;
END //
DELIMITER ;
#假如要删除
#drop function rand_num;
步骤4:创建存储过程
#创建往stu表中插入数据的存储过程 DELIMITER // CREATE PROCEDURE insert_stu( START INT , max_num INT ) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; #设置手动提交事务 REPEAT #循环 SET i = i + 1; #赋值 INSERT INTO student (stuno, name ,age ,classId ) VALUES ((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000)); UNTIL i = max_num END REPEAT; COMMIT; #提交事务 END // DELIMITER ; #假如要删除 #drop PROCEDURE insert_stu;
创建往class表中插入数据的存储过程
#执行存储过程,往class表添加随机数据 DELIMITER // CREATE PROCEDURE `insert_class`( max_num INT ) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO class ( classname,address,monitor ) VALUES (rand_string(8),rand_string(10),rand_num(1,100000)); UNTIL i = max_num END REPEAT; COMMIT; END // DELIMITER ; #假如要删除 #drop PROCEDURE insert_class;
步骤5:调用存储过程
class
#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);
stu
#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);
步骤6:删除某表上的索引
创建存储过程
DELIMITER // CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200)) BEGIN DECLARE done INT DEFAULT 0; DECLARE ct INT DEFAULT 0; DECLARE _index VARCHAR(200) DEFAULT ''; DECLARE _cur CURSOR FOR SELECT index_name FROM information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND seq_in_index=1 AND index_name <>'PRIMARY' ; #每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束 DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ; #若没有数据返回,程序继续,并将变量done设为2 OPEN _cur; FETCH _cur INTO _index; WHILE _index<>'' DO SET @str = CONCAT("drop index " , _index , " on " , tablename ); PREPARE sql_str FROM @str ; EXECUTE sql_str; DEALLOCATE PREPARE sql_str; SET _index=''; FETCH _cur INTO _index; END WHILE; CLOSE _cur; END // DELIMITER ;
执行存储过程
CALL proc_drop_index("dbname","tablename");
MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了高效访问数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响。
大多数情况下都〈默认)采用B+树来构建索引。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引
其实,用不用索引,最终都是优化器说了算。优化器是基于什么的优化器?基于cost开销
(CostBaseOptimizer ),它不是基于规则(Rule-BasedOptimizer),也不是基于语义。怎么样开销小就怎么来。另外,SQL语句是否使用索引,跟数据库版本、数据量、数据选择度都有关系
#1)全值匹配我最爱 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30; /*语句一:没有索引 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 10.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4; /*语句二:没有索引 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 1.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND NAME = 'abcd'; /*语句三:没有索引 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 0.10 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND NAME = 'abcd'; #Empty set, 1 warning (0.13 sec) EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30; /* +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_age,idx_age_classid,idx_age_classid_name | idx_age | 5 | const | 10182 | 100.00 | NULL | +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------+ */ #分别为student表创建三个索引: CREATE INDEX idx_age ON student(age);#索引一 CREATE INDEX idx_age_classid ON student(age,classId);#索引二 CREATE INDEX idx_age_classid_name ON student(age,classId,NAME);#索引三 #显示student表上的索引 SHOW INDEX FROM student; #再次执行有索引的语句一: EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30; /*使用了索引一:索引字段为age +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_age,idx_age_classid,idx_age_classid_name | idx_age | 5 | const | 10182 | 100.00 | NULL | +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------+ */ #再次执行有索引的语句二: EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4; /*使用了索引二:索引字段为age、classId +----+-------------+---------+------------+------+----------------------------------------------+-----------------+---------+-------------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------------------------------------+-----------------+---------+-------------+------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_age,idx_age_classid,idx_age_classid_name | idx_age_classid | 10 | const,const | 9 | 100.00 | NULL | +----+-------------+---------+------------+------+----------------------------------------------+-----------------+---------+-------------+------+----------+-------+ */ #再次执行有索引的语句三: EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND NAME = 'abcd'; /*使用了索引三:索引字段为age、classId 、NAME +----+-------------+---------+------------+------+----------------------------------------------+----------------------+---------+-------------------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------------------------------------+----------------------+---------+-------------------+------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_age,idx_age_classid,idx_age_classid_name | idx_age_classid_name | 73 | const,const,const | 1 | 100.00 | NULL | +----+-------------+---------+------------+------+----------------------------------------------+----------------------+---------+-------------------+------+----------+-------+ */ #全值匹配表示索引列和查询条件的字段全部匹配,精度高,key_len长度大 #结论: #当创建多个索引时,查询优化器通常会选取和查询字段匹配度最高的索引 #因为匹配度越高,查询效率越快 #此时除被选中的索引外,其它索引失效
补充:
上面SQL语句中SQL_NO_CACHE的使用保证不存在查询缓存,使各语句的比较不受“是否缓存”的影响,从而达到了“控制变量”的目的
在MySQL建立联合索引时会遵守最佳左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配
#2)最佳左前缀法则 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd' ; /*使用了索引一:索引字段为age +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------------+ | 1 | SIMPLE | student | NULL | ref | idx_age,idx_age_classid,idx_age_classid_name | idx_age | 5 | const | 10182 | 10.00 | Using where | +----+-------------+---------+------------+------+----------------------------------------------+---------+---------+-------+-------+----------+-------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND student.name = 'abcd'; /*没有使用索引:因为没有classid索引、也没有(classid、name)索引 没有使用(age,classId,NAME)索引的原因:不符合最佳左前缀法则 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 1.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE classid=4 AND student.age=30 AND student.name = 'abcd'; /*使用了索引三(age,classId,NAME):索引字段为age、classId 、NAME +----+-------------+---------+------------+------+----------------------------------------------+----------------------+---------+-------------------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------------------------------------+----------------------+---------+-------------------+------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_age,idx_age_classid,idx_age_classid_name | idx_age_classid_name | 73 | const,const,const | 1 | 100.00 | NULL | +----+-------------+---------+------------+------+----------------------------------------------+----------------------+---------+-------------------+------+----------+-------+ */
结论:
MySQL可以为多个字段创建索引,一个索引可以包括16个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有使用这些字段中第1个字段时,多列(或联合)索引不会被使用。
拓展: Alibaba 《Java开发手册》
索引文件具有B-Tree的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引
对于一个使用InnoDB存储引擎的表来说,在没有显式的创建索引时,表中的数据实际上都是存储在聚簇索引的叶子节点的。而记录又是存储在数据页中的,数据页和记录又是按照记录主键值从小到大的顺序进行排序,所以如果插入的记录的主键值是依次增大的话,那每插满一个数据页就换到下一个数据页继续插,而如果插入的主键值忽大忽小的话(一般不让这种情况发生),就比较麻烦了,假设某个数据页存储的记录已经满了,它存储的主键值在1~100之间:
如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:
可这个数据页已经满了,再插进来咋办呢?
需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中
页面分裂和记录移位意味着什么?
意味着: 性能损耗 !所以如果想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。
所以建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是手动插入 ,比如: person_info 表:
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id 拥有AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。
#4)计算、函数、类型转换(自动或手动)导致索引失效 CREATE INDEX idx_name ON student(NAME);#创建索引(NAME) #此语句比下一条要好!(能够使用上索引) EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%'; /* +----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ | 1 | SIMPLE | student | NULL | range | idx_name | idx_name | 63 | NULL | 36 | 100.00 | Using index condition | +----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ */ #LEFT(student.name,3) = 'abc'; 中left函数的使用导致索引失效 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc'; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ #再举例 CREATE INDEX idx_sno ON student(stuno);#创建索引(stuno) EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001; /*使用“stuno+1 = 900001”算术运算导致索引失效 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000; /*使用了索引: +----+-------------+---------+------------+------+---------------+---------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+---------+---------+-------+------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_sno | idx_sno | 4 | const | 1 | 100.00 | NULL | +----+-------------+---------+------------+------+---------------+---------+---------+-------+------+----------+-------+ */ #再举例 EXPLAIN SELECT id, stuno, NAME FROM student WHERE SUBSTRING(NAME, 1,3)='abc'; /*索引失效 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */
#5)类型转换导致索引失效 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE NAME = 123; /*没有使用索引:name是字符串类型,和int匹配要类型转换 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | idx_name | NULL | NULL | NULL | 498858 | 10.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE NAME = '123'; /*使用了索引: +----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_name | idx_name | 63 | const | 1 | 100.00 | NULL | +----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+ */
范围条件:含(<) (<=) (>) (>=)和between等的条件
#6)范围条件右边的列索引失效 SHOW INDEX FROM student; CALL proc_drop_index('atguigudb2','student');#清空所有student表的索引 CREATE INDEX idx_age_classId_name ON student(age,classId,NAME);#创建联合索引 idx_age_classId_name EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.classId>20 AND student.name = 'abc' ; /*Using index condition表示:有些搜索条件中虽然出现了索引列,但却不能使用到索引 #使用了索引 idx_age_classId_name但是只用了联合索引的前两个字段 # 结合`age` INT(3)占5 、 `classId` INT(11)占5 以及key_len=10可知只使用了前两个字段 +----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+-------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+-------+----------+-----------------------+ | 1 | SIMPLE | student | NULL | range | idx_age_classId_name | idx_age_classId_name | 10 | NULL | 18456 | 10.00 | Using index condition | +----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+-------+----------+-----------------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20; /*对于优化器来说AND连接的这几个条件可以任意颠倒,故此SQL语句和上一句执行效果一样 +----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+-------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+-------+----------+-----------------------+ | 1 | SIMPLE | student | NULL | range | idx_age_classId_name | idx_age_classId_name | 10 | NULL | 18456 | 10.00 | Using index condition | +----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+-------+----------+-----------------------+ */ #建一个新的索引 CREATE INDEX idx_age_name_cid ON student(age,NAME,classId); EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20; /*在新索引下三个字段都用上了 +----+-------------+---------+------------+-------+---------------------------------------+------------------+---------+------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------------------------------+------------------+---------+------+------+----------+-----------------------+ | 1 | SIMPLE | student | NULL | range | idx_age_classId_name,idx_age_name_cid | idx_age_name_cid | 73 | NULL | 1 | 100.00 | Using index condition | +----+-------------+---------+------------+-------+---------------------------------------+------------------+---------+------+------+----------+-----------------------+ */ #补充说明: #对于优化器来说AND连接的字段先写哪个后写哪个无所谓 #具体使用了哪几个字段只和索引中定义字段的位置以及哪个字段使用了范围查询有关 #“范围条件右边的列”中的右-->是左是右要看索引中定义字段的相对位置,而不是字段在where中的位置
启发:
应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后,建索引时也放在最后
(创建的联合索引中,务必把范围涉及到的字段写在最后)
#7)不等于(!= 或者<>)索引失效
#不等于时用不上B+树,只能一个一个查找
CREATE INDEX idx_name ON student(NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name <> 'abc' ;
#或
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name != 'abc' ;
/*索引失效
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| 1 | SIMPLE | student | NULL | ALL | idx_name | NULL | NULL | NULL | 498858 | 50.15 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
*/
#8)is null可以使用索引,is not null无法使用索引
#is null可以使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;
#is not null无法使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;
最好在设计数据表的时候就将字段设置为 NOT NULL约束,比如可以将INT类型的字段,默认值设置为0。将字符类型的默认值设置为空字符串’’’’。
拓展:同理,在查询中使用not like 也无法使用索引,导致全表扫描
在使用LIKE关键字进行查询的查询语句中,如果匹配字符串的第一个字符为"%”,索引就不会起作用。只有"%"不在第一个位置,索引才会起作用
#9)like以通配符%开头索引失效 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE NAME LIKE 'ab%'; /*使用了索引 +----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ | 1 | SIMPLE | student | NULL | range | idx_name | idx_name | 63 | NULL | 711 | 100.00 | Using index condition | +----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE NAME LIKE '%ab%'; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 11.11 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */
拓展:
Alibaba《Java开发手册》
【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
在WHERE子句中,如果在OR前的条件列进行了索引,而在OR后的条件列没有进行索引,那么索引会失效。也就是说,OR前后的两个条件中的列都是索引时,查询中才使用索引
因为OR的含义就是两个只要满足一个即可,因此只有一个条件列进行了索引是没有意义的,只要有条件列没有进行索引,就会进行全表扫描,因此索引的条件列也会失效
#10)OR 前后存在非索引的列,索引失效 SHOW INDEX FROM student; CALL proc_drop_index('atguigudb2','student'); CREATE INDEX idx_age ON student(age); EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100; /*没有使用索引 +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | idx_age | NULL | NULL | NULL | 498858 | 11.88 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ #为前后两个索引都创建索引,则OR连接他们时就可以使用索引 CREATE INDEX idx_cid ON student(classid); EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100; /*因为age字段和classid字段上都有索引,所以查询中使用了索引 +----+-------------+---------+------------+-------------+-----------------+-----------------+---------+------+-------+----------+-------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------------+-----------------+-----------------+---------+------+-------+----------+-------------------------------------------+ | 1 | SIMPLE | student | NULL | index_merge | idx_age,idx_cid | idx_age,idx_cid | 5,5 | NULL | 10612 | 100.00 | Using union(idx_age,idx_cid); Using where | +----+-------------+---------+------------+-------------+-----------------+-----------------+---------+------+-------+----------+-------------------------------------------+ 能看到这里使用到了index_merge,简单来说index_merge就是对age和classid分别进行了扫描,然后将这两个结果集进行了合并。这样做的好处就是避免了全表扫描 */
统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的字符集进行比较前需要进行 转换会造成索引失效
建议:数据库和表的字符集统一使用utf8mb4
假设: index(a,b.c)
Where语句 | 索引是否被使用 |
---|---|
where a = 3 | Y使用到a |
where a = 3 and b= 5 | Y使用到a,b |
where a = 3and b= 5 and c= 4 | Y,使用到a,b,c |
where b= 3 或者where b = 3 and c= 4或者 where c= 4 | 没有使用索引 |
where a = 3 and c = 5 | 使用到a,但是c不可以,b中间断了 |
where a = 3 and b =4 and c = 5 | 使用到a和b,c不能用在范围之后,b断了 |
where a is null and b is not null | is null支持索引但是is not null不支持。所以a可以使用索引但是 b不可以使用 |
where a <> 3 | 不能使用索引 |
where abs(a)=3 | 不能使用索引 |
where a = 3 and b like ‘kk%’ and c=4; | 使用到a,b,c |
where a = 3 and b like ‘%okk’ and c =4 | 只用到a |
where a= 3 and b like ‘%okkv%’ and c =4 | 只用到a |
一般性建议:
CREATE TABLE IF NOT EXISTS `type` ( `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `card` INT(10) UNSIGNED NOT NULL, PRIMARY KEY (`id`) ); #图书 CREATE TABLE IF NOT EXISTS `book` ( `bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `card` INT(10) UNSIGNED NOT NULL, PRIMARY KEY (`bookid`) ); #向分类表中添加20条记录 INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20))); #向图书表中添加20条记录 INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20))); INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
下面开始 EXPLAIN 分析
# 情况1:左外连接
#连接的时候就和“嵌套循环”一样
#每次从驱动表里选取一条记录去被驱动表里整个遍历一遍
#将符合连接条件的放到结果集中
#驱动表和被驱动表-->EXPLAIN执行结果的记录中,上面的是驱动表,下面的是被驱动表
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
结论:type 有All
添加索引优化
#给被驱动表加了索引可以避免全表扫描
ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
可以看到第二行的 type 变为了 ref,rows 也变成了1,优化比较明显。这是由左连接特性决定的。LEFT JOIN条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引 。
#给驱动表加了索引也要全表扫描
ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
接着:
DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
drop index X on type;
drop index Y on book;#(如果已经删除了可以不用再执行该操作)
换成 inner join(MySQL自动选择驱动表)
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
添加索引优化
ALTER TABLE book ADD INDEX Y ( card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
接着:
DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;
接着:
ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;
结论:
1.对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的
2.对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表出现
3.对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。“小表驱动大表”
join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5 版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会非常长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行
驱动表就是主表,被驱动表就是从表、非驱动表
查看哪个是驱动表、哪个是被驱动表:EXPLAIN执行结果的记录中,上面的是驱动表,下面的是被驱动表
SELECT * FROM A JOIN B ON ...
A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看
SELECT * FROM A LEFT JOIN B ON ...
#或者
SELECT * FROM B RIGHT JOIN A ON ...
通常,大家会认为A就是驱动表,B就是被驱动表,但也未必
算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result…以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:
可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B=10万次。开销统计如下:
开销统计 | SNLJ |
---|---|
外表扫描次数: | 1 |
内表扫描次数: | A |
读取记录数: | A+B*A |
JOIN比较次数: | B*A |
回表读取记录次数: | 0 |
当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Loop Join 优化算法
Index Nested-Loop Join其优化的思路主要是为了减少内层表数据的匹配次数
,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内层表的每条记录去进行比较,这样极大的减少了对内层表的匹配次数
驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。
Index Nested-Loop Join
来看一下这个语句:
EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a);
如果直接使用join语句,MySQL优化器可能会选择表t1或t2作为驱动表,这样会影响分析SQL语句的执行过程。所以,为了便于分析执行过程中的性能问题,改用 straight_join 让MySQL使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去join。在这个语句里,t1 是驱动表,t2是被驱动表。
可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执行流程是这样的:
这个过程是先遍历表t1,然后根据从表t1中取出的每行数据中的a值,去表t2中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以称之为“Index Nested-Loop Join”,简称NLJ。
它对应的流程图如下所示:
在这个流程里:
开销统计 | SNLJ | INLJ |
---|---|---|
外表扫描次数: | 1 | 1 |
内表扫描次数: | A | 0–>直接用索引 |
读取记录数: | A+B*A | A+B(match)–>A+B匹配的数目 |
JOIN比较次数: | B*A | A*Index(Height) |
回表读取记录次数: | 0 | B(match)(if possible) |
如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高
如果存在索引,那么会使用index的方式进行join,如果join时被驱动表的列没有索引,被驱动表要扫描的次数太多了。每次访问被驱动表,其表中的记录都会被加载到内存中,然后再从驱动表中取一条与其匹配,匹配结束后清除内存,然后再从驱动表中加载一条记录,然后把被驱动表的记录在加载到内存匹配,这样周而复始,大大增加了IO的次数。为了减少被驱动表的IO次数,就出现了Block Nested-Loop Join的方式。
不再是逐条获取驱动表的数据,而是一块一块的获取,引入了join buffer缓冲区,将驱动表join相关的部分数据列(大小受join buffer的限制)缓存到join buffer中,然后全表扫描被驱动表,被驱动表的每一条记录一次性和join buffer中的所有驱动表记录进行匹配(内存中操作),将简单嵌套循环中的多次比较合并成一次,降低了被驱动表的访问频率
注意:
这里缓存的不只是关联表的列,select后面的列也会缓存起来。
在一个有N个join关联的sql中会分配N-1个join buffer。所以查询的时候尽量减少不必要的字段,可以让join buffer中可以存放更多的列。
开销统计 | SNLJ | INLJ | BNLJ |
---|---|---|---|
外表扫描次数: | 1 | 1 | 1 |
内表扫描次数: | A | 0 | A* used_column_size / join_buffer_size+1 |
读取记录数: | A+B*A | A+B(match) | A+B*(A * used_column_size /join_buffer_size) |
JOIN比较次数: | B*A | A *Index(Height) | B*A |
回表读取记录次数: | 0 | B(match)(if possible) | 0 |
参数设置
通过show variables like '%optimizer_switch%'查看block_nested_loop状态。默认是开启的。 join_buffer_size
驱动表能不能一次加载完,要看join buffer能不能存储所有的数据,默认情况下join_buffer_size=256k 。
show variables like '%join_buffers ';
join_buffer_size的最大值在32位系统可以申请4G,而在64位操做系统下可以申请大于4G的Join Buffer空间〔64位windows除外,其大会被截断为4GB并发出警告)。
在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与join的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。
从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join
Nested Loop:
对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。
Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行
这种方式适用于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。
在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高IO的性能。
它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1=B.COL2),这是由Hash的特点决定的
类别 | Nested Loop | Hash Join |
---|---|---|
使用条件 | 任何条件 | 等值连接(=) |
相关资源 | CPU、磁盘IO | 内存、临时空间 |
特点 | 当有高选择性索引或进行限制性搜索时效率比较高能能够快速返回第一次的搜索结果 | 当缺乏索引或索引条件模糊时,Hash Join比Nested于率比较高,Loop有效。在数据仓库环境下,如果表的纪录数多,效率高 |
缺点 | 当索引丢失或者查询条件限制不够时,效率很低。当表的纪录数多时,效率低 | 为建立哈希表,需要大量内存。第一次的结果返回较慢 |
MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作。
子查询是MySQL的一项重要的功能,可以通过一个SQL语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:
在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询不需要建立临时表,其速度比子查询要快,如果查询中使用索引的话,性能就会更好
举例1:查询学生表中是班长的学生信息
#4. 子查询的优化 #创建班级表中班长的索引 CREATE INDEX idx_monitor ON class(monitor); #查询班长的信息 EXPLAIN SELECT * FROM student stu1 WHERE stu1.`stuno` IN ( SELECT monitor FROM class c WHERE monitor IS NOT NULL ); EXPLAIN SELECT stu1.* FROM student stu1 JOIN class c ON stu1.`stuno` = c.`monitor` WHERE c.`monitor` IS NOT NULL; /* +----+--------------+-------------+------------+--------+---------------------+---------------------+---------+-----------------------+--------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+--------------+-------------+------------+--------+---------------------+---------------------+---------+-----------------------+--------+----------+--------------------------+ | 1 | SIMPLE | stu1 | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | NULL | | 1 | SIMPLE | <subquery2> | NULL | eq_ref | <auto_distinct_key> | <auto_distinct_key> | 5 | atguigudb2.stu1.stuno | 1 | 100.00 | NULL | | 2 | MATERIALIZED | c | NULL | index | idx_monitor | idx_monitor | 5 | NULL | 9952 | 100.00 | Using where; Using index | +----+--------------+-------------+------------+--------+---------------------+---------------------+---------+-----------------------+--------+----------+--------------------------+ 3 rows in set, 1 warning (0.09 sec) */ #查询不为班长的学生信息 #方式一 EXPLAIN SELECT SQL_NO_CACHE a.* FROM student a WHERE a.stuno NOT IN ( SELECT monitor FROM class b WHERE monitor IS NOT NULL) /* +----+-------------+-------+------------+-------+---------------+-------------+---------+------+--------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+-------------+---------+------+--------+----------+--------------------------+ | 1 | PRIMARY | a | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using where | | 2 | SUBQUERY | b | NULL | index | idx_monitor | idx_monitor | 5 | NULL | 9952 | 100.00 | Using where; Using index | +----+-------------+-------+------------+-------+---------------+-------------+---------+------+--------+----------+--------------------------+ +----+-------------+-------+------------+------+---------------+-------------+---------+--------------------+--------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+-------------+---------+--------------------+--------+----------+--------------------------+ | 1 | SIMPLE | a | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | NULL | | 1 | SIMPLE | b | NULL | ref | idx_monitor | idx_monitor | 5 | atguigudb2.a.stuno | 1 | 100.00 | Using where; Using index | +----+-------------+-------+------------+------+---------------+-------------+---------+--------------------+--------+----------+--------------------------+ 2 rows in set, 2 warnings (0.09 sec) */ #方式二 EXPLAIN SELECT SQL_NO_CACHE a.* FROM student a LEFT OUTER JOIN class b ON a.stuno =b.monitor WHERE b.monitor IS NULL; /* +----+-------------+-------+------------+------+---------------+-------------+---------+--------------------+--------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+-------------+---------+--------------------+--------+----------+--------------------------+ | 1 | SIMPLE | a | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | NULL | | 1 | SIMPLE | b | NULL | ref | idx_monitor | idx_monitor | 5 | atguigudb2.a.stuno | 1 | 100.00 | Using where; Using index | +----+-------------+-------+------------+------+---------------+-------------+---------+--------------------+--------+----------+--------------------------+ 2 rows in set, 2 warnings (0.02 sec) */
结论:尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代
问题:在WHERE条件字段上加索引,但是为什么在ORDER BY字段上还要加索引呢?
回答:
在MySQL中,支持两种排序方式,分别是 FileSort 和Index排序。
Using filesort: 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buiffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSot 排序。
using index: 通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高
优化建议:
#5. 排序优化 #删除student和class表中的非主键索引 CALL proc_drop_index('atguigudb2','student'); CALL proc_drop_index('atguigudb2','class'); SHOW INDEX FROM student; SHOW INDEX FROM class; #过程一: EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using filesort | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ */ EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using filesort | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ */ #过程二:order by时不limit,索引失效 #创建索引 CREATE INDEX idx_age_classid_name ON student (age,classid,NAME); #不限制,索引失效 EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | Using filesort | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+----------------+ */ #EXPLAIN SELECT SQL_NO_CACHE age,classid,name,id FROM student ORDER BY age,classid; #增加limit过滤条件,使用上索引了。 EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10; /* +----+-------------+---------+------------+-------+---------------+----------------------+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+----------------------+---------+------+------+----------+-------+ | 1 | SIMPLE | student | NULL | index | NULL | idx_age_classid_name | 73 | NULL | 10 | 100.00 | NULL | +----+-------------+---------+------------+-------+---------------+----------------------+---------+------+------+----------+-------+ */ #过程三:order by时顺序错误,索引失效 #创建索引age,classid,stuno CREATE INDEX idx_age_classid_stuno ON student (age,classid,stuno); #以下哪些索引失效? EXPLAIN SELECT * FROM student ORDER BY classid LIMIT 10;#失效 EXPLAIN SELECT * FROM student ORDER BY classid,NAME LIMIT 10; #失效 EXPLAIN SELECT * FROM student ORDER BY age,classid,stuno LIMIT 10;#使用索引,使用了三个字段 EXPLAIN SELECT * FROM student ORDER BY age,classid LIMIT 10;##使用索引,使用了三个字段 EXPLAIN SELECT * FROM student ORDER BY age LIMIT 10;#使用索引,使用了三个字段 #过程四:order by时规则不一致, 索引失效 (顺序错,不索引;方向反,不索引) EXPLAIN SELECT * FROM student ORDER BY age DESC, classid ASC LIMIT 10;#失效,没用使用索引 EXPLAIN SELECT * FROM student ORDER BY classid DESC, NAME DESC LIMIT 10;#失效,没用使用索引 EXPLAIN SELECT * FROM student ORDER BY age ASC,classid DESC LIMIT 10; #失效,没用使用索引 EXPLAIN SELECT * FROM student ORDER BY age DESC, classid DESC LIMIT 10;#使用了索引 /* +----+-------------+---------+------------+-------+---------------+----------------------+---------+------+------+----------+---------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+----------------------+---------+------+------+----------+---------------------+ | 1 | SIMPLE | student | NULL | index | NULL | idx_age_classid_name | 73 | NULL | 10 | 100.00 | Backward index scan | +----+-------------+---------+------------+-------+---------------+----------------------+---------+------+------+----------+---------------------+ 1 row in set, 1 warning (0.01 sec) */ #过程五:无过滤,不索引 EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid;#使用了索引,仅age字段 /* +----+-------------+---------+------------+------+--------------------------------------------+-----------------------+---------+-------+-------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+--------------------------------------------+-----------------------+---------+-------+-------+----------+-------+ | 1 | SIMPLE | student | NULL | ref | idx_age_classid_name,idx_age_classid_stuno | idx_age_classid_stuno | 5 | const | 19184 | 100.00 | NULL | +----+-------------+---------+------------+------+--------------------------------------------+-----------------------+---------+-------+-------+----------+-------+ */ EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid,NAME; #使用了索引,仅age字段 EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age; EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age LIMIT 10;#使用了索引,用了所有字段 CREATE INDEX idx_cid ON student(classid); EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age;
小结
INDEX a_b_c(a,b,c) order by 能使用索引最左前缀 - ORDER BY a - ORDER BY a,b - ORDER BY a,b,c - ORDER BY a DESC,b DESC,c DESC 如果WHERE使用索引的最左前缀定义为常量,则order by 能使用索引 - WHERE a = const ORDER BY b,c - WHERE a = const AND b = const ORDER BY c - WHERE a = const ORDER BY b,c - WHERE a = const AND b > const ORDER BY b,c 不能使用索引进行排序 - ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */ - WHERE g = const ORDER BY b,c /*丢失a索引*/ - WHERE a = const ORDER BY c /*丢失b索引*/ - WHERE a = const ORDER BY a,d /*d不是索引的一部分*/ - WHERE a in (...) ORDER BY b,c /*对于排序来说,多个相等条件也是范围查询*/
ORDER BY子句,尽量使用Index方式排序,避免使用FileSort方式排序
测试filesort和index排序:
执行案例前先清除student上的索引,只留主键:
DROP INDEX idx_age ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_age_classid_name ON student;
#或者
call proc_drop_index('atguigudb2','student');
场景:查询年龄为30岁的,且学生编号小于101000的学生,按用户名称排序
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
/*
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-----------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-----------------------------+
| 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 3.33 | Using where; Using filesort |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-----------------------------+
*/
type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须
的
优化思路:
方案一: 为了去掉filesort我们可以把索引建成
#创建新索引
CREATE INDEX idx_age_name ON student(age,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
/*
+----+-------------+---------+------------+-------+---------------------------------+--------------------+---------+------+------+----------+---------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------------------------+--------------------+---------+------+------+----------+---------------------------------------+
| 1 | SIMPLE | student | NULL | range | idx_age_stuno_name,idx_age_name | idx_age_stuno_name | 9 | NULL | 20 | 100.00 | Using index condition; Using filesort |
+----+-------------+---------+------------+-------+---------------------------------+--------------------+---------+------+------+----------+---------------------------------------+
*/
方案二: 尽量让where的过滤条件和排序使用上索引
建一个三个字段的组合索引:
DROP INDEX idx_age_name ON student;
CREATE INDEX idx_age_stuno_name ON student (age,stuno,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
/*
+----+-------------+---------+------------+-------+--------------------+--------------------+---------+------+------+----------+---------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+--------------------+--------------------+---------+------+------+----------+---------------------------------------+
| 1 | SIMPLE | student | NULL | range | idx_age_stuno_name | idx_age_stuno_name | 9 | NULL | 20 | 100.00 | Using index condition; Using filesort |
+----+-------------+---------+------------+-------+--------------------+--------------------+---------+
*/
结果竟然有filesort的sql运行速度,超过了已经优化掉filesort的 sql,而且快了很多,几乎一瞬间就出现了结果。
原因:
所有的排序都是在条件过滤之后才执行的。所以,如果条件过滤掉大部分数据的话,剩下几百几千条数据进行排序其实并不是很消耗性能,即使索引优化了排序,但实际提升性能很有限。相对的stuno<101000这个条件,如果没有用到索引的话,要对几万条的数据进行扫描,这是非常消耗性能的,所以索引放在这个字段上性价比最高,是最优选择。
结论:
思考:这里我们使用如下索引,是否可行?
DROP INDEX idx_age_stuno_name ON student;
CREATE INDEX idx_age_stuno ON student(age,stuno);
可以
排序的字段若如果不在索引列上,则filesort会有两种算法:双路排序和单路排序
双路排序 (慢)
取一批数据,要对磁盘进行两次扫描,众所周知,IO是很耗时的,所以在mysql4.1之后,出现了第二种改进的算法,就是单路排序
单路排序 (快)
从磁盘读取查询需要的 所有列 ,按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空间, 因为它把每一行都保存在内存中了。
结论及引申出的问题
由于单路是后出的,总体而言好过双路
但是用单路有问题
order by 优化:
优化策略
1.尝试提高 sort_buffer_size
不管用哪种算法。提高这个参数都会提高效率,要根据系统的能力去提高,因为这个参数是针对每个进程(connection)的1M-8M之间调整。MySQL5.7,InnoDB存储引擎默认值是1048576字节,1MB,
SHOW VARIABLES LIKE '%sort_buffer_size%';
/*
+-------------------------+---------+
| Variable_name | Value |
+-------------------------+---------+
| innodb_sort_buffer_size | 1048576 |
| myisam_sort_buffer_size | 8388608 |
| sort_buffer_size | 262144 |
+-------------------------+---------+
*/
2.尝试提高 max_length_for_sort_data
提高这个参数,会增加用改进算法的概率。
SHOW VARIABLES LIKE '%max_length_for_sort_data%';#默认1024字节
/*
SHOW VARIABLES LIKE '%max_length_for_sort_data%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| max_length_for_sort_data | 4096 |
+--------------------------+-------+
*/
但是如果设的太高,数据总容量超出sort_buffer_size的概率就增大,明显症状是高的磁盘I/O活动和低的处理器使用率。如果需要返回的列的总长度大于max_length_for_sort_data,使用双路算法,否则使用单路算法。1024-8192字节之间调整
3.Order by 时select * 是一个大忌。最好只Query需要的字段
一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000-2000010的记录,其他记录丢弃,查询排序的代价非常大
在大数据量的分页查询时,limit后的起始位置越靠后,耗时越长
EXPLAIN select * from student limit 2000000,10;
/*
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------+
| 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | NULL |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------+
*/
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;
/*
+----+-------------+------------+------------+--------+---------------+---------+---------+------+--------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+--------+---------------+---------+---------+------+--------+----------+-------------+
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 100.00 | NULL |
| 1 | PRIMARY | t | NULL | eq_ref | PRIMARY | PRIMARY | 4 | a.id | 1 | 100.00 | NULL |
| 2 | DERIVED | student | NULL | index | NULL | PRIMARY | 4 | NULL | 498858 | 100.00 | Using index |
+----+-------------+------------+------------+--------+---------------+---------+---------+------+--------+----------+-------------+
*/
优化思路二
该方案适用于主键自增的表,可以把Limit查询转换成某个位置的查询
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
/*
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | student | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 1 | 100.00 | Using where |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
*/
limit优化思路:通过覆盖索引+子查询的方式来优化
尽量使用覆盖索引(覆盖索引:查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少使用selecl *.
覆盖索引: SQL只需要通过索引就可以返回查询所需要的数据,而不必通过二级索引查到主键之后再去查询数据
理解方式一: 索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引
理解方式二: 非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列 。
覆盖索引演示
#6. 覆盖索引 #删除之前的索引 #举例1: DROP INDEX idx_age_stuno ON student; CREATE INDEX idx_age_name ON student (age,NAME); EXPLAIN SELECT * FROM student WHERE age <> 20; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | idx_age_name | NULL | NULL | NULL | 498858 | 100.00 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT age,NAME FROM student WHERE age <> 20; /*使用了索引,打破了前面说的“不等于”的查询索引会失效的原则 原因:查询优化器发现使用索引时,不会回表,开销更小,故使用了索引 +----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+ | 1 | SIMPLE | student | NULL | index | idx_age_name | idx_age_name | 68 | NULL | 498858 | 100.00 | Using where; Using index | +----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+ */ #举例2: EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc'; /* +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ | 1 | SIMPLE | student | NULL | ALL | NULL | NULL | NULL | NULL | 498858 | 11.11 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+ */ EXPLAIN SELECT id,age FROM student WHERE NAME LIKE '%abc'; /* +----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+ | 1 | SIMPLE | student | NULL | index | NULL | idx_age_name | 68 | NULL | 498858 | 11.11 | Using where; Using index | +----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+ */
好处:
避免Innodb表进行索引的二次查询(回表)
lnnodb是以聚集索引的顺序来存储的,对于Innodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询,减少了IO操作,提升了查询效率,|
可以把随机IO变成顺序IO加快查询效率
由于覆盖索引是按键值的顺序存储的,对于IO密集型的范围查找来说,对比随机从磁盘读取每一行的数据IO要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的IO转变成索引查找的顺序IO。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段
弊端:
有一张教师表,表定义如下:
create table teacher(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;
讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
select col1, col2 from teacher where email='xxx';
如果email这个字段上没有索引,那么这个语句就只能做 全表扫描 。
MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串
alter table teacher add index index1(email);
#或
alter table teacher add index index2(email(6))
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图
如果使用的是index1(即email整个字符串的索引结构),执行顺序是这样的:
如果使用的是index2(即email(6)索引结构),执行顺序是这样的:
结论:
使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。ICP可以减少存储引擎访问基表的次数以及MySQL服务器访问存储引擎的次数
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的优化方式
好处:
ICP可以减少存储引擎必须访问基表的次数和MySQL服务器必须访问存储引擎的次数
但是
ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例
storage层:只将满足index key条件的索引记录对应的整行记录取出,返回给server层
server 层:对返回的数据,使用后面的where条件过滤,直至返回最后一行。
使用前,存储层多返回了需要被index filter过滤掉的整行记录使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递到server层的成本。
ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例
ICP的使用条件:
① 只能用于二级索引(secondary index)
②explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null
③ 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
④ ICP可以用于MyISAM和InnnoDB存储引擎
⑤ MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持。
⑥ 当SQL使用覆盖索引时,不支持ICP优化方法
案例1
SELECT * FROM tuser
WHERE NAME LIKE '张%'
AND age = 10
AND ismale = 1;
从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。
这个表的建表语句是:
create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)
假设,执行查询的语句是 select id from test where k=5。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下change buffer。
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性
将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了 访问这个数据页 会触发merge外,系统有后台线程会定期merge。在 数据库正常关闭(shutdown) 的过程中,也会执行merge操作。
如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存 ,提高内存利用率。
唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用
如果要在这张表中插入一个新记录(4,400)的话,InnoDB的处理流程是怎样的?
问题:
不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?
回答:
索引是个前提,其实选择与否还是要看表的大小。你可以将选择的标准理解为小表驱动大表。在这种方式下效率是最高的。
L比如下面这样:
SELECT * FROM A WHERE cc IN(SELECT cc FRON B)
SELECT * FROM WHERE EXISTS (SELECT cc FRON B WHERE B.cc=A.cc)
当A小于B时,用EXISTS。因为EXISTS的实现,相当于外表循环,实现的逻辑类似于:
for i in A
far j in B
if j.cc == i.cc then ...
当B小于A时用IN,因为实现的逻辑类似于:
for i in B
for j in A
if j.cc= i.cc then...
哪个表小就用哪个表来驱动,A表小就用EXISTS,B表小就用IN
问:
在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT() 、 SELECT COUNT(1) 和SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?
答:
前提:如果要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以
环节1:
COUNT(*)和COUNT(1)都是对所有结果进行COUNT,COUNT()和COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有WHERE了句,则是对所有符合筛选条件的数据行进行统计;如果没有WHERE子句,则是对数据表的数据行数进行统计
环节2:
如果是MyISAM存储引擎,统计数据表的行数只需要o(1)的复杂度,这是因为每张MyISAM的数据表都有一个meta信息存储了row_count值,而—致性则由表级锁来保证
如果是InnoDB存储引擎,因为InnoDB支持事务,采用行级锁和MVCC机制,所以无法像 MyISAM—样,维护一个row_count变量,因此需要采用扫描全表,进行循环+计数的方式来完成统计
环节3:
在InnoDB 引擎中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键采用的索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引(非聚簇索引)。对于COUNT(*)和COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。
如果有多个二级索引,会使用key_len 小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过 查询数据字典 将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用 覆盖索引
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
聊一个实际问题:淘宝的数据库,主键是如何设计的?
某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显的错误就是关于MySQL的主键设计。大部分人的回答如此自信:用8字节的 BIGINT 做主键,而不要用INT。 错 !
这样的回答,只占在了数据库这一层,而没有 从业务的角度 思考主键。主键就是一个自增ID吗?
站在2022年的新年档口,用自增做主键,架构设计上可能 连及格都拿不到
自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除了简单,其他都是缺点,总体来看存在以下几方面的问题:
为了能够唯一地标识一个会员的信息,需要为 会员信息表 设置一个主键。那么,怎么为这个表设置主键,才能达到我们理想的目标呢? 这里我们考虑业务字段做主键
表数据如下:
在这个表里,哪个字段比较合适呢?
CREATE TABLE demo.membermaster
(
cardno CHAR(8) PRIMARY KEY, -- 会员卡号为主键
membername TEXT,
memberphone TEXT,
memberpid TEXT,
memberaddress TEXT,
sex TEXT,
birthday DATETIME
);
Query OK, 0 rows affected (0.06 sec)
不同的会员卡号对应不同的会员,字段“cardno”唯一地标识某一个会员。如果都是这样,会员卡号与会员一一对应,系统是可以正常运行的。
但实际情况是, 会员卡号可能存在重复使用 的情况。比如,张三因为工作变动搬离了原来的地址,不再到商家的门店消费了 (退还了会员卡),于是张三就不再是这个商家门店的会员了。但是,商家不想让这个会 员卡空着,就把卡号是“10000001”的会员卡发给了王五。
从系统设计的角度看,这个变化只是修改了会员信息表中的卡号是“10000001”这个会员 信息,并不会影响到数据一致性。也就是说,修改会员卡号是“10000001”的会员信息, 系统的各个模块,都会获取到修改后的会员信息,不会出现“有的模块获取到修改之前的会员信息,有的模块获取到修改后的会员信息,而导致系统内部数据不一致”的情况。因此,从 信息系统层面 上看是没问题的。
但是从使用 系统的业务层面 来看,就有很大的问题 了,会对商家造成影响。
比如,我们有一个销售流水表(trans),记录了所有的销售流水明细。2020 年 12 月 01 日,张三在门店购买了一本书,消费了 89 元。那么,系统中就有了张三买书的流水记录,如下所示:
接着,我们查询一下 2020 年 12 月 01 日的会员销售记录:
SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
FROM demo.trans AS a
JOIN demo.membermaster AS b
JOIN demo.goodsmaster AS c
ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
/*
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 张三 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.00 sec)
*/
如果会员卡“10000001”又发给了王五,我们会更改会员信息表。导致查询时:
SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
FROM demo.trans AS a
JOIN demo.membermaster AS b
JOIN demo.goodsmaster AS c
ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
/*
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 王五 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.01 sec
*/
这次得到的结果是:王五在 2020 年 12 月 01 日,买了一本书,消费 89 元。显然是错误的!结论:千万不能把会员卡号当做主键
经验:
刚开始使用 MySQL 时,很多人都很容易犯的错误是喜欢用业务字段做主键,想当然地认为了解业务需求,但实际情况往往出乎意料,而更改主键设置的成本非常高
在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键 淘宝是如何设计的呢?是自增ID吗?
打开淘宝,看一下订单信息:
1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113
可以发现,订单号不是自增ID!
订单号是19位的长度,且订单的最后5位都是一样的,都是08113。且订单号的前面14位部分是单调递增的。
大胆猜测,淘宝的订单ID设计应该是:
订单ID = 时间 + 去重字段 + 用户ID后6位尾号
这样的设计能做到全局唯一,且对分布式系统查询极其友好
非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息
核心业务 :主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调递增是希望插入时不影响数据库性能
这里推荐最简单的一种主键设计:UUID
UUID的特点:
全局唯一,占用36字节,数据无序,插入性能差
MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)
UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:
SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);
通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!
从上图可以看到插入1亿条数据有序UUID是最快的,而且在实际业务使用中有序UUID在 业务端就可以生成 。还可以进一步减少SQL的交互次数。
另外,虽然有序UUID相比自增ID多了8个字节,但实际只增大了3G的存储空间,还可以接受
在当今的互联网环境中,非常不推荐自增ID作为主键的数据库设计。更推荐类似有序UUID的全局唯一的实现。
另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样的主键设计就更为考验架构师的水平了
如果不是MySQL8.0 肿么办?
手动赋值字段做主键!
比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。
可以在总部MySQL数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。
门店在添加会员的时候,先到总部MySQL数据库中获取这个最大值,在这个基础上加 1,然后用这个值作为新会员的“id”,同时,更新总部 MySQL 数据库管理信息表中的当前会员编号的最大值。
这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进 行操作,就解决了各门店添加会员时会员编号冲突的问题
说明:本内容整理自尚硅谷B站MySQL视频>>尚硅谷B站MySQL视频
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。