赞
踩
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
AutoGrad 是一个老少皆宜的 Python 梯度计算模块。
对于初高中生而言,它可以用来轻易计算一条曲线在任意一个点上的斜率。
对于大学生、机器学习爱好者而言,你只需要传递给它Numpy这样的标准数据库下编写的损失函数,它就可以自动计算损失函数的导数(梯度)。
我们将从普通斜率计算开始,介绍到如何只使用它来实现一个逻辑回归模型。
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。
(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.
(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南。
请选择以下任一种方式输入命令安装依赖:
pip install autograd
对于初高中生同学而言,它可以用来轻松计算斜率,比如我编写一个斜率为0.5的直线函数:
import autograd.numpy as np
from autograd import grad
def oneline(x):
y = x/2
return y
grad_oneline = grad(oneline)
print(grad_oneline(3.0))
运行代码,传入任意X值,你就能得到在该X值下的斜率:
(base) G:\push\20220724>python 1.py
0.5
由于这是一条直线,因此无论你传什么值,都只会得到0.5的结果。
那么让我们再试试一个tanh函数:
import autograd.numpy as np
from autograd import grad
def tanh(x):
y = np.exp(
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。